In this Perspective, we report on the recent progress in atomistic-level understanding of selective partial hydrogenation of α,β-unsaturated carbonyl compounds, particularly acrolein, toward unsaturated alcohols over model single crystalline and nanostructured Pd catalysts. This reaction was observed to proceed with nearly 100% selectivity over Pd(111) but not over supported Pd nanoparticles. The origin of the high selectivity was related to formation of a dense overlayer of oxopropyl surface species occurring at the early reaction stages via partial hydrogenation of the C=C bond in acrolein with only one H atom. This oxopropyl overlayer strongly modifies the adsorption and reactive properties of Pd(111), turning it 100% selective toward C=O bond hydrogenation. The underlying reaction mechanism represents a particular case of ligand-directed heterogeneous catalysis, in which the surface adsorbates do not directly participate in the catalytic process as the reaction intermediates but strongly affect the elementary reaction steps via specific adsorbate-adsorbate interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.8b01782 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
UESTC: University of Electronic Science and Technology of China, School of Materials and Energy, Chengdu, Sichuan, 611731, Chengdu, CHINA.
The electrochemical reduction of carbon dioxide (CO2) to methane (CH4) presents a promising solution for mitigating CO2 emissions while producing valuable chemical feedstocks. Although single-atom catalysts have shown potential in selectively converting CO2 to CH4, their limited active sites often hinder the realization of high current densities, posing a selectivity-activity dilemma. In this study, we developed a single-atom cobalt (Co) doped copper catalyst (Co1Cu) that achieved a CH4 Faradaic efficiency exceeding 60% with a partial current density of -482.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from has a unique mechanism to protect the H-cluster from oxygen-induced degradation.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.
Lumefantrine (LMF) is a low-solubility antimalarial drug that cures acute, uncomplicated malaria. It exerts its pharmacological effects against erythrocytic stages of spp. and prevents malaria pathogens from producing nucleic acid and protein, thereby eliminating the parasites.
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:
The hydrogen-based partial denitrification coupled with anammox (H-PDA) biofilm system effectively achieves low-carbon and high-efficiency biological nitrogen removal. However, the effects and biological interaction mechanism of H flux with the H-PDA system have not yet been understood. This study assessed the effects of H flux on interactions among anammox bacteria (AnAOB), denitrifying bacteria (DB), and sulfate-reducing bacteria (SRB) coexisting in a H-PDA system.
View Article and Find Full Text PDFJ Chromatogr A
December 2024
Synthetic Molecule Pharmaceutical Science, gRED, Genentech, Inc., 1 DNA Way, South San Francisco, CA, 94080, United States. Electronic address:
Quantitative structure retention relation (QSRR) is an active field of research, primarily focused on predicting chromatography retention time (Rt) based on molecular structures of an input analyte on a single or limited number of reversed-phase HPLC (RP-HPLC) columns. However, in the pharmaceutical chemistry manufacturing and controls (CMC) settings, single-column QSRR models are often insufficient. It is important to translate retention time across different HPLC methods, specifically different stationary phases (SP) and mobile phases (MP), to guide the HPLC method development, and to bridge organic impurity profiles across different development phases and laboratories.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!