We report the field-effect transistors using quasi-two-dimensional electron gas generated at an ultrathin (∼10 nm) AlO/TiO heterostructure interface grown via atomic layer deposition (ALD) on a SiO/Si substrate without using a single crystal substrate. The 2DEG at the AlO/TiO interface originates from oxygen vacancies generated at the surface of the TiO bottom layer during ALD of the AlO overlayer. High-density electrons (∼10 cm) are confined within a ∼2.2 nm distance from the AlO/TiO interface, resulting in a high on-current of ∼12 μA/μm. The ultrathin TiO bottom layer is easy to fully deplete, allowing an extremely low off-current, a high on/off current ratio over 10, and a low subthreshold swing of ∼100 mV/decade. Via the implementation of ALD, a mature thin-film process can facilitate mass production as well as three-dimensional integration of the devices.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.8b05891DOI Listing

Publication Analysis

Top Keywords

field-effect device
4
device quasi-two-dimensional
4
quasi-two-dimensional electron
4
electron gas
4
gas mass-producible
4
mass-producible atomic-layer-deposited
4
atomic-layer-deposited alo/tio
4
alo/tio ultrathin
4
field-effect
1
quasi-two-dimensional
1

Similar Publications

High-Mobility All-Transparent TFTs with Dual-Functional Amorphous IZTO for Channel and Transparent Conductive Electrodes.

Materials (Basel)

January 2025

Department of IT Semiconductor Convergence Engineering, Research Institute of Advanced Convergence Technology, Tech University of Korea, Siheung 15073, Republic of Korea.

The increasing demand for advanced transparent and flexible display technologies has led to significant research in thin-film transistors (TFTs) with high mobility, transparency, and mechanical robustness. In this study, we fabricated all-transparent TFTs (AT-TFTs) utilizing amorphous indium-zinc-tin-oxide (a-IZTO) as a dual-functional material for both the channel layer and transparent conductive electrodes (TCEs). The a-IZTO was deposited using radio-frequency magnetron sputtering, with its composition adjusted for both channel and electrode functionality.

View Article and Find Full Text PDF

Design and Study of a Novel P-Type Junctionless FET for High Performance of CMOS Inverter.

Micromachines (Basel)

January 2025

State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China.

In this paper, a novel p-type junctionless field effect transistor (PJLFET) based on a partially depleted silicon-on-insulator (PD-SOI) is proposed and investigated. The novel PJLFET integrates a buried N+-doped layer under the channel to enable the device to be turned off, leading to a special work mechanism and optimized performance. Simulation results show that the proposed PJLFET demonstrates an I/I ratio of more than seven orders of magnitude, with I reaching up to 2.

View Article and Find Full Text PDF

A Negative Capacitance Field-Effect Transistor with High Rectification Efficiency for Weak-Energy 2.45 GHz Microwave Wireless Transmission.

Micromachines (Basel)

December 2024

State Key Laboratory of Wide-Bandgap Semiconductor Devices and lntegrated Technology, School of Microelectronics, Xi'an University of Electronic Science and Technology, Xi'an 710071, China.

This paper proposes and designs a silicon-based negative capacitance field effect transistor (NCFET) to replace conventional MOSFETs as the rectifying device in RF-DC circuits, aiming to enhance the rectification efficiency under low-power density conditions. By combining theoretical analysis with device simulations, the impacts of the ferroelectric material anisotropy, ferroelectric layer thickness, and active region doping concentration on the device performance were systematically optimized. The proposed NCFET structure is tailored for microwave wireless power transmission applications.

View Article and Find Full Text PDF

Gate dielectrics are essential components in nanoscale field-effect transistors (FETs), but they often face significant instabilities when exposed to harsh environments, such as radioactive conditions, leading to unreliable device performance. In this paper, we evaluate the performance of ultrascaled transition metal dichalcogenide (TMD) FETs equipped with vacuum gate dielectric (VGD) as a means to circumvent oxide-related instabilities. The nanodevice is computationally assessed using a quantum simulation approach based on the self-consistent solutions of the Poisson equation and the quantum transport equation under the ballistic transport regime.

View Article and Find Full Text PDF

Hybrid superconductor-semiconductor Josephson field-effect transistors (JoFETs) function as Josephson junctions with gate-tunable critical current. Additionally, they can feature a non-sinusoidal current-phase relation (CPR) containing multiple harmonics of the superconducting phase difference, a so-far underutilized property. Here we exploit this multi-harmonicity to create a Josephson circuit element with an almost perfectly π-periodic CPR, indicative of a largely dominant charge-4e supercurrent transport.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!