Signal delay is a crucial factor in resistive pulse analyses using low-thickness-to-diameter aspect-ratio pores that aim to detect fine features in the ionic current blockade during the fast translocation of individual analytes to attain single-molecule tomography. Here we report on evaluations of the ionic current response to dynamic motions of nanoparticles in ultrathin solid-state nanopores. We systematically investigated the effects of pore resistance and membrane capacitance on resistive pulse waveforms under different salt concentration conditions and device configurations. The results revealed substantial modifications in the resistive pulse waveforms due to a slow charging/discharging processes at the water-touching thin dielectrics in the solid-state nanopore chips. We also provide a device design to improve the temporal resolution without compromising the spatial sensitivity. The present findings offer a breakthrough toward nanoporescopy to measure the nanoscopic shape of single-bioparticles and -molecules in electrolyte solution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b11819 | DOI Listing |
Gels
January 2025
Faculty of Medicine, Dalian University of Technology, Dalian 116033, China.
Peptides can be designed to self-assemble into predefined supramolecular nanostructures, which are then employed as biomaterials in a range of applications, including tissue engineering, drug delivery, and vaccination. However, current self-assembling peptide (SAP) hydrogels exhibit inadequate self-healing capacities and necessitate the use of sophisticated printing apparatus, rendering them unsuitable for 3D printing under physiological conditions. Here, we report a precisely designed charged peptide, Z5, with the object of investigating the impact of electrostatic interactions on the self-assembly and the rheological properties of the resulting hydrogels.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX 77843, USA.
In this preliminary study, the long-term effects of calcium chloride crosslinking concentration on viability of 16HBE14o- human bronchial epithelial cells embedded in alginate-extracellular matrix (ECM) or alginate-methylcellulose-ECM hydrogels have been investigated. There is currently a limited understanding regarding the effects of crosslinking solution concentration on lung epithelial cells embedded in hydrogel. Furthermore, the effects of calcium chloride concentration in crosslinking solutions on other cell types have not been reported regarding whether the addition of viscosity and stiffness tuning agents such as methylcellulose will alter the responses of cells to changes in calcium chloride concentration in crosslinking solutions.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
Department of Energy and Process Engineering, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
Electroosmosis reduces the available energy from ion transport arising due to concentration gradients across ion-exchange membranes. This work builds on previous efforts to describe the electroosmosis, the permselectivity and the apparent transport number of a membrane, and we show new measurements of concentration cells with the Selemion CMVN cation-exchange membrane and single-salt solutions of HCl, LiCl, NaCl, MgCl, CaCl and NHCl. Ionic transport numbers and electroosmotic water transport relative to the membrane are efficiently obtained from a relatively new permselectivity analysis method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Microelectronics, Shanghai University, Shanghai 201800, China.
Organic mixed ionic-electronic conductors (OMIECs) are crucial in defining the operational modes and performance of organic electrochemical transistors (OECTs). However, studies on the design and structure-performance correlations of small-molecule n-type OMIECs remain scarce. Herein, we designed and synthesized a series of naphthalene diimide (NDI)-based n-type small molecules by extending π-conjugation and increasing the number of electron-withdrawing groups, achieving performance optimization and even changes in operational modes through structural regulations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
National Key Laboratory of Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266237, China.
Deep eutectic solvent (DES)-based conductive hydrogels have attracted great interest in the building of flexible electronic devices that can be used to replace conventional temperature-intolerant hydrogels and expensive ionic liquid gels. However, current DES-based conductive hydrogels obtained have limited mechanical strength, high hysteresis, and poor microdeformation sensitivity of the assembled sensors. In this work, a rubber-like conductive hydrogel based on -acryloylglycinamide (NAGA) and DES (acetylcholine chloride/acrylamide) has been synthesized by a one-step method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!