A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultratough, Self-Healing, and Tissue-Adhesive Hydrogel for Wound Dressing. | LitMetric

Ultratough, Self-Healing, and Tissue-Adhesive Hydrogel for Wound Dressing.

ACS Appl Mater Interfaces

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering , Shanghai Jiao Tong University, Shanghai 200240 , P. R. China.

Published: October 2018

A hydrogel for potential applications in wound dressing should possess several peculiar properties, such as efficient self-healing ability and mechanical toughness, so as to repair muscle and skin damage. Additionally, excellent cell affinity and tissue adhesiveness are also necessary for the hydrogel to integrate with the wound tissue in practical applications. Herein, an ultratough and self-healing hydrogel with superior cell affinity and tissue adhesiveness is prepared. The self-healing ability of the hydrogel is obtained through hydrogen bonds and dynamic Schiff cross-linking between dopamine-grafted oxidized sodium alginate (OSA-DA) and polyacrylamide (PAM) chains. The covalent cross-linking is responsible for its stable mechanical structure. The combination of physical and chemical cross-linking contributes to a novel hydrogel with efficient self-healing ability (80% mechanical recovery in 6 h), high tensile strength (0.109 MPa), and ultrastretchability (2550%), which are highly desirable properties and are superior to previously reported tough and self-healing hydrogels for wound dressing applications. More remarkably, due to plenty of catechol groups on the OSA-DA chains, the hydrogel has unique cell affinity and tissue adhesiveness. Moreover, we demonstrate the practical utility of our fabricated hydrogel via both in vivo and in vitro experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.8b10064DOI Listing

Publication Analysis

Top Keywords

wound dressing
12
self-healing ability
12
cell affinity
12
affinity tissue
12
tissue adhesiveness
12
ultratough self-healing
8
hydrogel
8
efficient self-healing
8
self-healing
5
self-healing tissue-adhesive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!