Previously, we have shown that ginkgolic acid has an ability to potentiate currents, mediated by αl subunits of glycine receptor. In order to define the mechanism of subunit specific action of ginkgolic acid we have performed comparative analysis of the amino acid sequences of at and α2 subunits of glycine receptor. Amino acids that contribute to the different action of ginkgolic acid on glycine receptors formed by these subunits were determined. Using whole-cell configuration of patch-clamp recording, we have demonstrated that mutation of three residues in α2 subunit for corresponding ones from αl subunit makes α2 receptors sensitive to the potentiation by ginkgolic acid. Currents, mediated by α2 mutant receptors, increased by 89±14% after application of ginkgolic acid. Similarly to ai receptors α2 mutant receptors have shown a decrease in EC₅₀. for glycine under the action of ginkgolic acid. Thus, subunit selectivity of the ginkgolic acid is in strong connection with three amino acid residues that are different in α1 And α2 subunits of glycine receptor.
Download full-text PDF |
Source |
---|
Cell Death Differ
January 2025
Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry/Hubei Province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Aging is a major risk factor for Alzheimer's disease (AD). With the prevalence of AD increased, a mechanistic linkage between aging and the pathogenesis of AD needs to be further addressed. Here, we report that a small ubiquitin-related modifier (SUMO) modification of p53 is implicated in the process which remarkably increased in AD patient's brain.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
The College of Forestry, Beijing Forestry University, 100083, Beijing, PR China. Electronic address:
This study aims to address the challenge of detoxifying ginkgolic acid and transform it from waste into a valuable resource. By using pseudo-template molecular imprinting technology to chemically modify polysaccharide materials, we developed a polysaccharide-based molecular imprinted material (MMCC-CD/CS-MIP) for the targeted separation and controlled release of ginkgolic acid. Under optimal conditions, MMCC-CD/CS-MIP demonstrated excellent adsorption performance (Q = 47.
View Article and Find Full Text PDFAntiviral Res
February 2025
Guangdong Provincial Key Laboratory of New Drug Screening & NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, Guangdong, China. Electronic address:
The Ebola virus, a filovirus, has been responsible for significant human fatalities since its discovery. Despite extensive research, effective small-molecule drugs remain elusive due to its complex pathogenesis. Inhibition of RNA synthesis is a promising therapeutic target, and the VP30 protein plays a critical role in this process.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Northwest University Chang An Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, Shaanxi, China.
Fibrosis is the outcome of any abnormal tissue repair process that results in normal tissue replacement with scar tissue, leading to persistent tissue damage and cellular injury. During the process of fibrosis, many cytokines and chemokines are involved, and their activities are controlled by post-translational modifications, especially SUMOylation and NEDDylation. Both these modifications entail a three-step process of activation, conjugation, and ligation that involves three kinds of enzymes, namely, E1 activating, E2 conjugating, and E3 ligase enzymes.
View Article and Find Full Text PDFCell Oncol (Dordr)
October 2024
Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain.
Background: Cancer-associated fibroblasts (CAFs) are the most abundant stromal cellular component in the tumor microenvironment (TME). CAFs contribute to tumorigenesis and have been proposed as targets for anticancer therapies. Similarly, dysregulation of SUMO machinery components can disrupt the balance of SUMOylation, contributing to tumorigenesis and drug resistance in various cancers, including breast cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!