A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spleen tyrosine kinase-dependent Nrf2 activation regulates oxidative stress-induced cell death in WiL2-NS human B lymphoblasts. | LitMetric

Spleen tyrosine kinase-dependent Nrf2 activation regulates oxidative stress-induced cell death in WiL2-NS human B lymphoblasts.

Free Radic Res

a Department of Bioscience and Biotechnology , Sejong University, Seoul , Republic of Korea.

Published: September 2018

Autoimmune rheumatic lesions are often characterised by the immune cell recruitment including B lymphocytes and the presence of reactive oxygen species (ROS), which increase antioxidant gene transcription via nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Spleen tyrosine kinase (Syk) has a major role in the signal transmission of all haematopoietic lineage cells including B/T cells, mast cells, and macrophages. In this study, we investigated whether B cell survival is regulated by Nrf2 via ROS-mediated Syk activation in WiL2-NS human B lymphoblast cells. When WiL2-NS cells were incubated with 1% foetal bovine serum (FBS), the survival rate and mitochondrial membrane potential (MMP) were reduced. In addition, 1% FBS increased caspase 3 activity, cytochrome C release, nuclear localisation of Nrf2, and ROS production. N-acetylcysteine attenuated ROS production and nuclear translocation of Nrf2. It also inhibited cell death, caspase 3 activation, MMP collapse, and cytochrome C release. Results from the 1% FBS treatment were consistent with those of HO treatment. Syk phosphorylation at tyrosine 525/526 was increased by incubation with 1% FBS or treatment with 100 µM HO. Nuclear translocation of Nrf2 by HO was inhibited by treatment with BAY61-3606, a Syk inhibitor. BAY61-3606 also promoted MMP collapse, cytochrome C release, caspase 3 activation, and cell death. Taken together, these results implicate that Syk controls oxidative stress-induced human B cell death via nuclear translocation of Nrf2 and MMP collapse. These results suggest that Syk is a novel regulator of Nrf2 activation.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10715762.2018.1505044DOI Listing

Publication Analysis

Top Keywords

cell death
16
cytochrome release
12
nuclear translocation
12
translocation nrf2
12
mmp collapse
12
spleen tyrosine
8
nrf2
8
nrf2 activation
8
oxidative stress-induced
8
wil2-ns human
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!