Perlecan/heparan sulfate proteoglycan 2 (HSPG2), a large HSPG, is indispensable for the development of musculoskeletal tissues, where it is deposited within the pericellular matrix (PCM) surrounding chondrocytes and disappears nearly completely at the chondro-osseous junction (COJ) of developing long bones. Destruction of perlecan at the COJ converts an avascular cartilage compartment into one that permits blood vessel infiltration and osteogenesis. Mutations in perlecan are associated with chondrodysplasia with widespread musculoskeletal and joint defects. This study elucidated novel signaling roles of perlecan core protein in endochondral bone formation and chondrocyte behavior. Perlecan subdomains were tested for chondrogenic properties in ATDC5 cells, a model for early chondrogenesis. A region within domain IV of perlecan (HSPG2 IV-3) was found to promote rapid prechondrocyte clustering. Introduction of the mutation (R3452Q) associated with the human skeletal disorder Schwartz-Jampel syndrome limited HSPG2 IV-3-induced clustering. HSPG2 IV-3 activity was enhanced when thermally unfolded, likely because of increased exposure of the active motif(s). HSPG2 IV-3-induced clustering was accompanied by the deactivation of key components of the focal adhesion complex, FAK and Src, with increased messenger RNA (mRNA) levels of precartilage condensation markers Sox9 and N-cadherin ( Cdh2), and cartilage PCM components collagen II ( Col2a1) and aggrecan ( Acan). HSPG2 IV-3 reduced signaling through the ERK pathway, where loss of ERK1/2 phosphorylation coincided with reduced FoxM1 protein levels and increased mRNA levels cyclin-dependent kinase inhibitor 1C (Cdkn1c) and activating transcription factor 3 ( Atf3), reducing cell proliferation. These findings point to a critical role for perlecan domain IV in cartilage development through triggering chondrocyte condensation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6411452 | PMC |
http://dx.doi.org/10.1002/jcb.27521 | DOI Listing |
J Cell Biochem
February 2019
Department of BioSciences, Rice University, Houston, Texas.
Perlecan/heparan sulfate proteoglycan 2 (HSPG2), a large HSPG, is indispensable for the development of musculoskeletal tissues, where it is deposited within the pericellular matrix (PCM) surrounding chondrocytes and disappears nearly completely at the chondro-osseous junction (COJ) of developing long bones. Destruction of perlecan at the COJ converts an avascular cartilage compartment into one that permits blood vessel infiltration and osteogenesis. Mutations in perlecan are associated with chondrodysplasia with widespread musculoskeletal and joint defects.
View Article and Find Full Text PDFSci Rep
May 2018
Department of BioSciences, Rice University, Houston, TX, 77005, USA.
Interrupting the interplay between cancer cells and extracellular matrix (ECM) is a strategy to halt tumor progression and stromal invasion. Perlecan/heparan sulfate proteoglycan 2 (HSPG2) is an extracellular proteoglycan that orchestrates tumor angiogenesis, proliferation, differentiation and invasion. Metastatic prostate cancer (PCa) cells degrade perlecan-rich tissue borders to reach bone, including the basement membrane, vasculature, reactive stromal matrix and bone marrow.
View Article and Find Full Text PDFMatrix Biol
June 2014
Department of Biochemistry and Cell Biology, Rice University, Houston, TX, 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA. Electronic address:
Perlecan/HSPG2, a large heparan sulfate (HS) proteoglycan, normally is expressed in the basement membrane (BM) underlying epithelial and endothelial cells. During prostate cancer (PCa) cell invasion, a variety of proteolytic enzymes are expressed that digest BM components including perlecan. An enzyme upregulated in invasive PCa cells, matrilysin/matrix metalloproteinase-7 (MMP-7), was examined as a candidate for perlecan proteolysis both in silico and in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!