Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Epithelial organoids are simplified models of organs grown in vitro from embryonic and adult stem cells. They are widely used to study organ development and disease, and enable drug screening in patient-derived primary tissues. Current protocols, however, rely on animal- and tumor-derived basement membrane extract (BME) as a 3D scaffold, which limits possible applications in regenerative medicine. This prompted us to study how organoids interact with their matrix, and to develop a well-defined hydrogel that supports organoid generation and growth. It is found that soft fibrin matrices provide suitable physical support, and that naturally occurring Arg-Gly-Asp (RGD) adhesion domains on the scaffold, as well as supplementation with laminin-111, are key parameters required for robust organoid formation and expansion. The possibility to functionalize fibrin via factor XIII-mediated anchoring also allows to covalently link fluorescent nanoparticles to the matrix for 3D traction force microscopy. These measurements suggest that the morphogenesis of budding intestinal organoids results from internal pressure combined with higher cell contractility in the regions containing differentiated cells compared to the regions containing stem cells. Since the fibrin/laminin matrix supports long-term expansion of all tested murine and human epithelial organoids, this hydrogel can be widely used as a defined equivalent to BME.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201801621 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!