Introduction: Fifteen to thirty percent of patients with impaired cardiac function have ventricular dyssynchrony and warrant cardiac resynchronization therapy (CRT). While leadless pacemakers eliminate lead-related complications, their current form factor is limited to single-chamber pacing. In this study, we demonstrate the feasibility of multisite, simultaneous pacing using miniaturized pacing nodes powered through wireless power transfer (WPT).
Methods: A wireless energy transfer system was developed based on resonant coupling at approximately 200 MHz to power multiple pacing nodes. The pacing node comprises circuitry to efficiently convert the harvested energy to output stimuli. To validate the use of these pacing nodes, ex vivo studies were carried out on Langendorff rodent heart models (n = 4). To mimic biventricular pacing, two beating Langendorff rodent heart models, kept 10 cm apart, were paced using two distinct pacing nodes, each attached on the ventricular epicardial surface of a given heart.
Results: All ex vivo Langendorff heart models were successfully paced with a simple coil antenna at 2 to 3 cm from the pacing node. The coil was operated at 198 MHz and 0.3 W. Subsequently, simultaneous pacing of two Langendorff heart models 30 cm apart using an output power of 5 W was reliably demonstrated.
Conclusion: WPT provides a feasible option for multisite, wireless cardiac pacing. While the current system remains limited in design, it offers support and a conceptual framework for future iterations and eventual clinical utility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jce.13738 | DOI Listing |
Sleep
January 2025
Sleep Research & Treatment Center, Department of Psychiatry & Behavioral Health, Penn State University, College of Medicine, Hershey PA, USA.
Study Objectives: Although heart rate variability (HRV), a marker of cardiac autonomic modulation (CAM), is known to predict cardiovascular morbidity, the circadian timing of sleep (CTS) is also involved in autonomic modulation. We examined whether circadian misalignment is associated with blunted HRV in adolescents as a function of entrainment to school or on-breaks.
Methods: We evaluated 360 subjects from the Penn State Child Cohort (median 16y) who had at least 3-night at-home actigraphy (ACT), in-lab 9-h polysomnography (PSG) and 24-h Holter-monitoring heart rate variability (HRV) data.
Biogerontology
January 2025
Clinic for Heart Surgery (UMH), Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany.
If a shortened lifespan is evolutionarily advantageous, it becomes more likely that nature will strive to change it accordingly, affecting how we understand aging. Premature mortality because of aging would seem detrimental to the individual, but under what circumstances can it be of value? Based on a relative incremental increase in fitness, simulations were performed to reveal the benefit of death. This modification allows for continuous evolution in the model and establishes an optimal lifespan even under challenging conditions.
View Article and Find Full Text PDFUltrasound Obstet Gynecol
January 2025
Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China.
Objectives: To compare the maternal hemodynamic profile at 12 + 0 to 15 + 6 weeks' gestation in women who subsequently developed pre-eclampsia (PE) and those who did not, and to assess the screening performance of maternal hemodynamic parameters for PE in combination with the Fetal Medicine Foundation (FMF) triple test, including maternal factors (MF), mean arterial pressure (MAP), uterine artery pulsatility index and placental growth factor.
Methods: This was a prospective case-control study involving Chinese women with a singleton pregnancy who underwent preterm PE screening at 11 + 0 to 13 + 6 weeks' gestation using the FMF triple test, between February 2020 and February 2023. Women identified as being at high risk (≥ 1:100) for preterm PE by the FMF triple test were matched 1:1 with women identified as low risk (< 1:100) for maternal age ± 3 years, maternal weight ± 5 kg and date of screening ± 14 days.
J Anat
January 2025
Hannover Medical School, Institute of Functional and Applied Anatomy, Hannover, Germany.
Obesity, along with hypoxia, is known to be a risk factor for pulmonary hypertension (PH), which can lead to right ventricular hypertrophy and eventually heart failure. Both obesity and PH influence the autonomic nervous system (ANS), potentially aggravating changes in the right ventricle (RV). This study investigates the combined effects of obesity and hypoxia on the autonomic innervation of the RV in a mouse model.
View Article and Find Full Text PDFFASEB J
January 2025
National Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China.
Microgravity-induced cardiac remodeling and dysfunction present significant challenges to long-term spaceflight, highlighting the urgent need to elucidate the underlying molecular mechanisms and develop precise countermeasures. Previous studies have outlined the important role of miRNAs in cardiovascular disease progression, with miR-199a-3p playing a crucial role in myocardial injury repair and the maintenance of cardiac function. However, the specific role and expression pattern of miR-199a-3p in microgravity-induced cardiac remodeling remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!