In the developing technology Charcot-Marie-Tooth (CMT) disease is one of the teeth diseases which are occurred due to the genetic reason. The CMT disease affects the muscle tissue which reduces the progressive growth of the muscle. So, the CMT disease needs to be recognized carefully for eliminating the risk factors in the early stage. At the time of this process, the system handles the difficulties while performing feature extraction and classification part. So, the teeth images are processed by applying the normalization method which eliminates the salt and pepper noise from data. From that, modified group delay function along with Cepstral coefficient features are extracted with effective manner. After that Bacterial Foraging Optimization Algorithm based features are selected. Then the selected features are examined by applying the Bacterial Foraging Optimization Algorithm based spiking neural network which successfully recognizes the CMT disease. At that point the productivity of the framework is assessed with the assistance of exploratory outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10916-018-1049-8DOI Listing

Publication Analysis

Top Keywords

cmt disease
16
bacterial foraging
12
foraging optimization
12
optimization algorithm
12
algorithm based
12
based spiking
8
spiking neural
8
neural network
8
disease
5
developing charcot-marie-tooth
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!