Motivation: Fingerprints (FPs) are the most common small molecule representation in cheminformatics. There are a wide variety of FPs, and the Extended Connectivity Fingerprint (ECFP) is one of the best-suited for general applications. Despite the overall FP abundance, only a few FPs represent the 3D structure of the molecule, and hardly any encode protein-ligand interactions.

Results: Here, we present a Protein-Ligand Extended Connectivity (PLEC) FP that implicitly encodes protein-ligand interactions by pairing the ECFP environments from the ligand and the protein. PLEC FPs were used to construct different machine learning models tailored for predicting protein-ligand affinities (pKi∕d). Even the simplest linear model built on the PLEC FP achieved Rp = 0.817 on the Protein Databank (PDB) bind v2016 'core set', demonstrating its descriptive power.

Availability And Implementation: The PLEC FP has been implemented in the Open Drug Discovery Toolkit (https://github.com/oddt/oddt).

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6477977PMC
http://dx.doi.org/10.1093/bioinformatics/bty757DOI Listing

Publication Analysis

Top Keywords

extended connectivity
12
protein-ligand extended
8
connectivity plec
8
plec
5
development protein-ligand
4
plec fingerprint
4
fingerprint application
4
application binding
4
binding affinity
4
affinity predictions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!