Measuring DNA content in live cells by fluorescence microscopy.

Cell Div

1University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave, Tucson, AZ 85724 USA.

Published: September 2018

Background: Live-cell fluorescence microscopy (LCFM) is a powerful tool used to investigate cellular dynamics in real time. However, the capacity to simultaneously measure DNA content in cells being tracked over time remains challenged by dye-associated toxicities. The ability to measure DNA content in single cells by means of LCFM would allow cellular stage and ploidy to be coupled with a variety of imaging directed analyses. Here we describe a widely applicable nontoxic approach for measuring DNA content in live cells by fluorescence microscopy. This method relies on introducing a live-cell membrane-permeant DNA fluorophore, such as Hoechst 33342, into the culture medium of cells at the end of any live-cell imaging experiment and measuring each cell's integrated nuclear fluorescence to quantify DNA content. Importantly, our method overcomes the toxicity and induction of DNA damage typically caused by live-cell dyes through strategic timing of adding the dye to the cultures; allowing unperturbed cells to be imaged for any interval of time before quantifying their DNA content. We assess the performance of our method empirically and discuss adaptations that can be implemented using this technique.

Results: Presented in conjunction with cells expressing a histone 2B-GFP fusion protein (H2B-GFP), we demonstrated how this method enabled chromosomal segregation errors to be tracked in cells as they progressed through cellular division that were later identified as either diploid or polyploid. We also describe and provide an automated Matlab-derived algorithm that measures the integrated nuclear fluorescence in each cell and subsequently plots these measurements into a cell cycle histogram for each frame imaged. The algorithm's accurate assessment of DNA content was validated by parallel flow cytometric studies.

Conclusions: This method allows the examination of single-cell dynamics to be correlated with cellular stage and ploidy in a high-throughput fashion. The approach is suitable for any standard epifluorescence microscope equipped with a stable illumination source and either a stage-top incubator or an enclosed live-cell incubation chamber. Collectively, we anticipate that this method will allow high-resolution microscopic analysis of cellular processes involving cell cycle progression, such as checkpoint activation, DNA replication, and cellular division.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123973PMC
http://dx.doi.org/10.1186/s13008-018-0039-zDOI Listing

Publication Analysis

Top Keywords

dna content
28
fluorescence microscopy
12
dna
9
measuring dna
8
content live
8
cells
8
live cells
8
cells fluorescence
8
measure dna
8
cellular stage
8

Similar Publications

Cell integrity limits ploidy in budding yeast.

G3 (Bethesda)

January 2025

Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Evidence suggests that increases in ploidy have occurred frequently in the evolutionary history of organisms and can serve adaptive functions to specialized somatic cells in multicellular organisms. However, the sudden multiplication of all chromosome content may present physiological challenges to the cells in which it occurs. Experimental studies have associated increases in ploidy with reduced cell survival and proliferation.

View Article and Find Full Text PDF

Systematic optimisation of crude buccal swab lysate protocols for use with the ForenSeq™ DNA Signature Prep Kit.

Int J Legal Med

January 2025

Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa.

The ForenSeq™ DNA Signature Prep kit has not been thoroughly tested with crude buccal swab lysates in large-scale population studies using massively parallel sequencing (MPS). Commonly used lysis buffers for swabs intending to undergo direct polymerase chain reaction (PCR) are SwabSolution™ and STR GO! Lysis Buffers, and these have been successfully used to generate population data using capillary electrophoresis (CE) systems. In this study, we investigated the performance and optimisation of SwabSolution™ and STR GO! lysates with the ForenSeq™ DNA Signature Prep workflow and addressed the challenge of failed MPS profiles in initial trials.

View Article and Find Full Text PDF

Microbial pathogens generate extracellular vesicles (EVs) for intercellular communication and quorum sensing. Microbial EVs also induce inflammatory pathways within host innate immune cells. We previously demonstrated that EVs secreted by trigger type I interferon signaling in host cells specifically via the cGAS-STING innate immune signaling pathway.

View Article and Find Full Text PDF

Cestodes in Eurasian wolves () and domestic dogs () in Switzerland.

Int J Parasitol Parasites Wildl

April 2025

Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland.

Eurasian wolves () and domestic dogs () are definitive hosts of numerous cestode species. While infections with adult stages in canids are usually subclinical, some species pose a zoonotic risk or cause infections in wildlife and livestock, resulting in disease and/or economic losses. This study aimed to determine the prevalence, species composition, and geographical distribution of cestode infections in dogs and free-ranging wolves in Switzerland.

View Article and Find Full Text PDF

The complete plastome size of DC. 1813 was 159,893 bp in length and has a typical quadripartite structure. The 87,148-bp-long large single-copy and the 18,763-bp-long small single-copy regions were separated by a pair of inverted repeats (each 26,991 bp).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!