Novel in-situ gel for intravesical administration of ketorolac.

Saudi Pharm J

Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.

Published: September 2018

The urinary bladder stores urine until the time of urination. Systemic administration of drugs to treat bladder diseases faces several limitations. Therefore, intravesical drug delivery is a promising alternative route of administration. An in-situ gel is used to form a gel inside the bladder cavity and ensure continuous release of the drug even after urination. The objective of the present study was to optimize an in-situ gel formulation of poloxamer and chitosan for intravesical delivery of ketorolac tromethamine. The gelling temperature of the prepared combinations ranged from 20.67 to 25.8 °C. In-vitro release of KT was sustained for up to 7 h using a poloxamer concentration ranging from 17% to 19% and a chitosan concentration ranging from 1% to 2%. Design-Expert® 10 was used to select the optimized formulation (poloxamer/chitosan 17/1.589% w/w) which significantly ( < 0.05) extended the drug release more than each polymer alone. An study showed the ability of the optimized formulation to sustain drug release after emptying two times to mimic urination. Furthermore, the formed gel adhered to the bladder tissue throughout the time period of the experiment. Intravesical administration of the optimized formulation to rabbits via catheter showed no obstruction of urine flow and continuous release of the drug for 12 h.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128712PMC
http://dx.doi.org/10.1016/j.jsps.2018.03.014DOI Listing

Publication Analysis

Top Keywords

in-situ gel
12
concentration ranging
8
novel in-situ
4
gel
4
gel intravesical
4
intravesical administration
4
administration ketorolac
4
ketorolac urinary
4
urinary bladder
4
bladder stores
4

Similar Publications

This research investigates the microbial inactivation potential of ternary TiO-CuO-chitosan nanocomposites (TCC NCs) applied as surface coatings on cowhide leather. Initially, bare TiO nanoparticles (NPs) and binary TiO-CuO (TC) NCs, with varying CuO NPs content, were prepared using an sol-gel method. These binary TC NCs were then modified with chitosan at varying weight percentages (2%, 4%, 6%, and 8%).

View Article and Find Full Text PDF

Background: A number of genetic aberrations are associated with the BCL6-correpresor gene (BCOR), including internal tandem duplications (ITDs) and gene fusions (BCOR::CCNB3 and BCOR::MAML3), as well as YWHAE::NUTM2, which are found in clear cell sarcoma of the kidney (CCSK), sarcoma with BCOR genetic alterations, primitive myxoid mesenchymal tumor of infancy, and high-grade neuroepithelial tumors in children. Detecting these gene aberrations is crucial for tumor diagnosis. ITDs can be identified by Sanger sequencing or agarose gel electrophoresis.

View Article and Find Full Text PDF

An antibacterial, antioxidant and hemostatic hydrogel accelerates infectious wound healing.

J Nanobiotechnology

January 2025

Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.

Hydrogel drug-delivery system that can effectively load antibacterial drugs, realize the in-situ drug release in the microenvironment of wound infection to promote wound healing. In this study, a multifunctional hydrogel drug delivery system (HA@TA-Okra) was constructed through the integration of hyaluronic acid methacrylate (HAMA) matrix with tannic acid (TA) and okra extract. The composition and structural characteristics of HA@TA-Okra system and its unique advantages in the treatment of diverse wounds were systematically evaluated.

View Article and Find Full Text PDF

An in-situ forming controlled release soft hydrogel-based C5a peptidase drug delivery system to treat psoriasis.

Int J Pharm

January 2025

Department of Chemical Sciences, Bernal Institute, University of Limerick, Ireland; SSPC Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick, Ireland. Electronic address:

The potent pro-inflammatory cytokine, interferon gamma (IFN-γ), is an enticing therapeutic target because of its accelerator role in several acute and chronic inflammatory processes. In this work, poloxamer 407 is developed as an in-situ gelling polymer for a long-acting formulation to deliver a serine protease, C5a peptidase (ScpA) from Streptococcus pyogenes. ScpA is well known for its activity against the complement factor C5a but has also recently been shown to cleave IFN-γ in vitro into inactive fragments.

View Article and Find Full Text PDF

Enzyme-instructed self-assembly (EISA) is a promising approach to anti-cancer therapeutics due to its precise targeting and unique cell death mechanism. In this study, we introduce a small molecule, DN6, which undergoes nitroreductase (NTR)-responsive liquid-liquid phase separation (LLPS) followed by a liquid-to-solid phase transition (LST) through a gel-like intermediate state, resulting in the formation of nanoaggregates with spatiotemporal control. The reduced form of DN6 (DN6R), owing to its aggregation-induced emission (AIE) and mitochondria-targeting capabilities, has been employed for organelle-specific imaging of tumor hypoxia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!