Chronic myelogenous leukemia (CML) is characterized by the oncogenic fusion protein, BCR-ABL protein kinase, against which clinically useful inhibitors have been developed. An alternative approach to treat CML is to degrade the BCR-ABL protein. Recently, potent degraders against BCR-ABL have been developed by conjugating dasatinib to ligands for E3 ubiquitin ligases. Since the degraders contain the dasatinib moiety, they also inhibit BCR-ABL kinase activity, which complicates our understanding of the impact of BCR-ABL degradation by degraders in CML growth inhibition. To address this issue, we chose DAS-IAP, as a potent BCR-ABL degrader, and developed a structurally related inactive degrader, DAS-meIAP, which inhibits kinase activity but does not degrade the BCR-ABL protein. DAS-IAP showed slightly weaker activity than DAS-meIAP in inhibiting cell growth when CML cells were treated for 48 h. However, DAS-IAP showed sustained growth inhibition even when the drug was removed after short-term treatment, whereas CML cell growth rapidly resumed following removal of DAS-meIAP and dasatinib. Consistently, suppression of BCR-ABL levels and downstream kinase signaling were maintained after DAS-IAP removal, whereas kinase signaling rapidly recovered following removal of DAS-meIAP and dasatinib. These results indicate that BCR-ABL degrader shows more sustained inhibition of CML cell growth than ABL kinase inhibitor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6131351 | PMC |
http://dx.doi.org/10.1038/s41598-018-31913-5 | DOI Listing |
Hematol Oncol
January 2025
University of California Irvine, Irvine, California, USA.
Despite the study of BCR::ABL1-positive and -negative myeloproliferative neoplasms (MPNs) providing seminal insights into cancer biology, tumor evolution and precision oncology over the past half century, significant challenges remain. MPNs are clonal hematopoietic stem cell-derived neoplasms with heterogenous clinical phenotypes and a clonal architecture which impacts the often-complex underlying genetics and microenvironment. The major driving molecular abnormalities have been well characterized, but debate on their role as disease-initiating molecular lesions continues.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Rd, Kingston, Rhode Island 02881, United States.
Despite the enthusiasm for targeted cancer therapies in preclinical studies and the success of a select few drugs, many promising drug candidates fail in clinical trials. The gap between preclinical promise and clinical outcomes underscores the need to investigate factors influencing the success or failure of targeted therapies. Dasatinib, an inhibitor of Abl and Src protein tyrosine kinases, is highly effective toward chronic myeloid leukemia (CML) by targeting BCR-Abl, but it is ineffective against solid tumors when targeting Src kinases.
View Article and Find Full Text PDFBiomed Chromatogr
February 2025
Drug Metabolism and Pharmacokinetics, Laxai Life Sciences Pvt. Ltd., Shamirpet, Hyderabad, India.
Vodobatinib is a Bcr-Abl 1 inhibitor, currently entering into Phase 2 clinical trials as a potential drug to treat glioblastoma patients. In the present work, a validated high-performance liquid chromatography (HPLC) detection method for the quantification of vodobatinib in rat plasma was established. Sample preparation involved liquid-liquid extraction method.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK.
The most frequent type of leukemia in Africa is chronic myeloid leukemia (CML). The genetic background of the rarer Philadelphia chromosome (Ph) Ph-ve (BCR-ABL-ve) subform of CML is largely unknown in African patients. Therefore, in this study, we aimed to investigate the role of CYP1A1 and 2D6 SNPs in the pathogenesis of Ph-ve CML in the Sudanese population.
View Article and Find Full Text PDFBMC Neurol
January 2025
Department of Neurosurgery, Gifu University Graduate School of Medicine, 1-1, Yanagido, Gifu, 501-1194, Japan.
Background: Tyrosine kinase inhibitors (TKIs) improve prognosis in chronic myeloid leukemia (CML). Nilotinib and ponatinib, second- and third-generation TKIs, respectively, have been reported to cause adverse vascular occlusive events such as myocardial infarction and peripheral arterial disease. However, little is known about the risk of cerebral infarction associated with severe cerebrovascular stenosis, which is a late complication of TKIs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!