The myocardium behaves like a sophisticated orchestra that expresses its true potential only if each member performs the correct task harmonically. Recapitulating its complexity within engineered 3D functional constructs with tailored biological and mechanical properties, is one of the current scientific priorities in the field of regenerative medicine and tissue engineering. In this study, driven by the necessity of fabricating advanced model of cardiac tissue, we present an innovative approach consisting of heterogeneous, multi-cellular constructs composed of Human Umbilical Vein Endothelial Cells (HUVECs) and induced pluripotent cell-derived cardiomyocytes (iPSC-CMs). Cells were encapsulated within hydrogel strands containing alginate and PEG-Fibrinogen (PF) and extruded through a custom microfluidic printing head (MPH) that allows to precisely tailor their 3D spatial deposition, guaranteeing a high printing fidelity and resolution. We obtained a 3D cardiac tissue compose of iPSC-derived CMs with a high orientation index imposed by the different defined geometries and blood vessel-like shapes generated by HUVECs which, as demonstrated by in vivo grafting, better support the integration of the engineered cardiac tissue with host's vasculature.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6131510PMC
http://dx.doi.org/10.1038/s41598-018-31848-xDOI Listing

Publication Analysis

Top Keywords

cardiac tissue
12
tissue engineering
8
tissue
5
multi-cellular bioprinting
4
bioprinting approach
4
approach vascularized
4
vascularized heart
4
heart tissue
4
engineering based
4
based huvecs
4

Similar Publications

Background: Takayasu arteritis (TAK) and giant cell arteritis (GCA), the most common forms of large-vessel vasculitis (LVV), can result in serious morbidity. Understanding the molecular basis of LVV should aid in developing better biomarkers and treatments.

Methods: Plasma proteomic profiling of 184 proteins was performed in two cohorts.

View Article and Find Full Text PDF

Infectious myocarditis (IM) and infective endocarditis (IE), sometimes associated with infection of the surrounding mediastinal tissue or embolic complications caused by residual implantable cardioverter defibrillator (ICD) lead material embedded in the ventricle, present a significant challenge for cardiac surgeons due to the difficulty of precisely locating the old intracardiac pacing lead remnants because of the heart's continuous movement. We present the case of successful two-stage elective sternotomy extraction of two residual defibrillator leads, one trapped in the left innominate vein, easily removed after veinotomy without cardiopulmonary bypass (CPB), and the other embedded intramyocardially in the inferior wall of the right ventricle, successfully removed under CPB after fluoroscopic guidance. The patient was discharged four weeks post-operation without complications.

View Article and Find Full Text PDF

Background: Risk stratification for sudden cardiac death (SCD) in patients with nonischemic cardiomyopathy (NICM) remains challenging.

Objectives: This study aimed to investigate the impact of epicardial adipose tissue (EAT) on SCD in NICM patients.

Methods: Our study cohort included 173 consecutive patients (age 53 ± 14 years, 73% men) scheduled for primary prevention implantable cardioverter-defibrillators (ICDs) implantation who underwent preimplant cardiovascular magnetic resonance.

View Article and Find Full Text PDF

Background/objectives: Very high-power and short-duration (vHPSD) ablation with QDOT MICRO™ facilitates speedy and safe ablation for pulmonary vein isolation. A brief time interval between ablating two neighboring sites with vHPSD may potentially influence the size and geometry of the lesions. This study evaluates lesion formation when delivering adjacent applications using vHPSD at various inter-lesion times (ILTs).

View Article and Find Full Text PDF

Aim: The aim of this study was to compare the effects of dexmedetomidine, midazolam, propofol, and intralipid on lidocaine-induced cardiotoxicity and neurotoxicity.

Methods: Forty-eight male Sprague-Dawley rats were randomly divided into six groups (n = 8 per group): control (C), lidocaine (L), lidocaine + dexmedetomidine (LD), lidocaine + midazolam (LM), lidocaine + propofol (LP), and lidocaine + intralipid (LI). Dexmedetomidine (100 µg/kg), midazolam (4 mg/kg), propofol (40 mg/kg), and intralipid (10 mg/kg) were administered intraperitoneally as pretreatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!