β1 Integrins Are Required To Mediate NK Cell Killing of .

J Immunol

Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada;

Published: October 2018

is a fungal pathogen that causes fatal meningitis and pneumonia. During host defense to , NK cells directly recognize and kill using cytolytic degranulation analogous to killing of tumor cells. This fungal killing requires independent activation of Src family kinase (SFK) and Rac1-mediated pathways. Recognition of requires the natural cytotoxicity receptor, NKp30; however, it is not known whether NKp30 activates both signal transduction pathways or whether a second receptor is involved in activation of one of the pathways. We used primary human NK cells and a human NK cell line and found that NKp30 activates SFK → PI3K but not Rac1 cytotoxic signaling, which led to a search for the receptor leading to Rac1 activation. We found that NK cells require integrin-linked kinase (ILK) to activate Rac1 for effective fungal killing. This observation led to our identification of β1 integrin as an essential anticryptococcal receptor. These findings demonstrate that multiple receptors, including β1 integrins and NKp30 and their proximal signaling pathways, are required for recognition of , which activates a central cytolytic antimicrobial pathway leading to fungal killing.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1701805DOI Listing

Publication Analysis

Top Keywords

fungal killing
12
β1 integrins
8
nkp30 activates
8
killing
5
integrins required
4
required mediate
4
mediate cell
4
cell killing
4
fungal
4
killing fungal
4

Similar Publications

Synthesis and functional screening of novel inhibitors targeting the HDAC6 zinc finger ubiquitin-binding domain.

Eur J Med Chem

December 2024

SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium. Electronic address:

Histone deacetylase 6 (HDAC6) is a promising target for treating neurodegenerative disorders, several cancer types and viral infections. Unique among HDACs, the HDAC6 isoform possesses a zinc finger ubiquitin-binding domain (UBD) crucial for managing misfolded protein aggregates and facilitating viral infection. HDAC6 binds aggregated polyubiquitinated proteins through its UBD, mediating their transport to the aggresome and subsequent removal via autophagy.

View Article and Find Full Text PDF

Transmission of transgenic mosquito-killing fungi during copulation.

Sci Rep

January 2025

Institut de Recherche en Sciences de la Santé, IRSS, Bobo-Dioulasso, Burkina Faso.

Entomopathogenic fungi engineered to express insect-specific neurotoxins have demonstrated potential as microbial control agents against malaria mosquitoes. Currently, the primary application method is via direct contact of spores with indoor resting mosquitoes. However, many malaria-transmitting mosquitoes feed and rest outdoors.

View Article and Find Full Text PDF

The protein deacetylase HDAC6 has been controversially linked to cancer cell proliferation and viral propagation. We analyzed whether a pharmacological depletion of HDAC6 with a recent proteolysis-targeting chimera (PROTAC) kills tumor cells. We show that low micromolar doses of the cereblon-based PROTAC TH170, but not its inactive analog TH170E, induce proteasomal degradation of HDAC6.

View Article and Find Full Text PDF

The bacterial pathogen causes disease in coral species worldwide. The mechanisms of coral colonization, coral microbiome interactions, and virulence factor production are understudied. In other model species, virulence factors like biofilm formation, toxin secretion, and protease production are controlled through a density-dependent communication system called quorum sensing (QS).

View Article and Find Full Text PDF

Nematode controlling effects and safety tests of Duddingtonia flagrans biological preparation in sheep.

Sci Rep

January 2025

Rui Pu Agricultural Technology Co., Ltd, Hohhot, Inner Mongolia, People's Republic of China.

Duddingtonia flagrans is a nematode-trapping fungus that is widely used to control parasitic nematodes in livestock. After oral ingestion and passage through the digestive tract of animals, this microorganism captures nematodes in feces. Although many researchers have examined the safety of this fungus for humans, animals, and the environment, few reports have discussed the safety of nematode-trapping D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!