The aim of this study was to construct a vaccine peptide candidate against pandemic Influenza H1N1 hemagglutinin and to test its structure. With the help of bioinformatic algorithms we showed that the sequence encoding the second polypeptide of pandemic Influenza H1N1 hemagglutinin (HA2) is protected from nonsynonymous mutations better than the sequence encoding its first polypeptide (HA1). With the help of secondary and ternary structure predicting algorithms we found the fragment of HA2 with the most reproducible secondary structure and synthesized the NY25 peptide corresponding to the residues Asn117 - Tyr141 of HA2. According to the circular dichroism spectra analysis, the peptide has short helix and beta hairpin. According to the analysis of differential fluorescence quenching results, two tyrosine residues are situated on a long distance from each other. These facts taken together with the positive results of affine chromatography with the serum of a person immunized by full-length hemagglutinin confirm that the structure of the fragment of viral full-length protein has been reproduced in the synthetic NY25 peptide. Amino acid sequence of the NY25 peptide (NLYEKVRSQLKNNAKEIGNGCFEFY) is relatively conserved in 18 subtypes of Influenza A virus hemagglutinin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2018.09.004 | DOI Listing |
Protein Pept Lett
June 2021
Department of General Chemistry, Belarusian State Medical University, Minsk, Belarus.
Aims: The aim of this study was to create a new version of the PentaFOLD algorithm and to test its performance experimentally in several proteins and peptides.
Background: Synthetic vaccines can cause production of neutralizing antibodies only in case if short peptides form the same secondary structure as fragments of full-length proteins. The Penta- FOLD 3.
Microb Pathog
December 2018
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1-40, Moscow, 119991, Russia.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!