Densitometric high performance thin layer chromatography (HPTLC) quantification method was developed to validate the decolorization/biotransformation of Disperse Orange ERL and dye mixture by lichen Parmelia sp. which release several colored compounds during decolorization process, hence unable to use colorimetric estimation. Percent decolorization of Disperse Orange ERL and dye mixture by lichen Parmelia sp. was observed when estimated using developed HPTLC method. Limit of detection and limit of quantification for both dyes in mixture were obtained as 0.3 and 1 μg/μl, respectively. Area of peak of control Disperse Orange ERL was reduced by 43% after 12 h, 71% after 48 h and upto 82% after 72 h of incubation. Precision and repeatability of data elucidated the % relative standard deviation less than 3 for all the values thus indicating statistically acceptable. Biodegradation of dye and mixture was confirmed with Fourier transform infrared spectroscopy analysis, i.e., altered fingerprinting spectral pattern.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2018.08.001 | DOI Listing |
Fish Shellfish Immunol
January 2025
Jiangxi Province Key Laboratory of Synthetic Pharmaceutical Chemistry, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, China. Electronic address:
The large-scale mining and utilization of rare earth elements have significantly increased their concentration in the environment, especially in regions surrounding mining areas. These environmentally-enriched rare earth elements accumulate in agricultural products and organisms through soil and water, potentially impacting in human health through the food chain. Erbium (Er), a rare earth element of the lanthanide series (Group IIIB), plays a crucial role in various modern technological applications.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai 608 502, Tamil Nadu, India.
A bio-fabrication approach is a novel way to develop chitosan-stabilized magnesium oxide nanomaterials (cMgO-NMs). The process involves utilizing polymeric chitosan as the reducing and stabilizing agent. The characteristics of the developed cMgO-NMs were determined using various spectroscopical techniques.
View Article and Find Full Text PDFCell Rep
January 2025
Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA. Electronic address:
Cytotoxic immune cells mediate precise attacks against diseased cells to maintain organismal health. Their operational unit of killing and host defense is lytic granules (LGs), which are specialized lysosomal-related organelles. Precision in cytotoxicity is achieved by converging the many LGs to the microtubule-organizing center (MTOC) and polarizing these to the diseased cell for secretion.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Pharmaceutical Science, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O. Box 751, Saudi Arabia.
This study presents the synthesis and application of water-ball (sodium polyacrylate) stabilized zero-valent iron nanoparticles (wb@Fe) for the eco-friendly degradation of Methyl Orange (MO). The nanoparticles were prepared using a chemical reduction method using NaBH. Characterization techniques including Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), and X-ray Diffraction (XRD) were employed to analyze the morphology, elemental composition, valent state and crystallinity of the nanoparticles.
View Article and Find Full Text PDFCancer immunotherapy using engineered cytotoxic effector cells has demonstrated significant potential. The limited spatial complexity of existing models, however, poses a challenge to mechanistic studies attempting to approve existing approaches of effector cell-mediated cytotoxicity within a three-dimensional, solid tumor-like environment. To gain additional experimental control, we developed an approach for constructing three-dimensional (3D) culture models using smart polymers that form temperature responsive hydrogels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!