In this work, the solvation of a nitrosyl ruthenium complex, [(CH)N][RuCl(qn)(NO)] (with qn = deprotonated 8-hydroxyquinoline), which is a potential NO-releasing molecule in the bio-environment, was studied in two bio-friendly solvents, namely deuterated dimethyl sulfoxide (dDMSO) and water (DO). A blue-shifted NO stretching frequency was observed in water with respect to that in dDMSO, which was believed to be due to ligand-solvent hydrogen-bonding interactions, one N═O···D and particularly three Ru-Cl···D, that show competing effects on the NO bond length. The dynamic differences of the NO stretch in these two solvents were further revealed by transient pump-probe IR and two-dimensional IR results: faster vibrational relaxation and faster spectral diffusion (SD) were observed in DO, confirming stronger solvent-solute interaction and also faster solvent structural dynamics in DO than in DMSO. Further, a significant non-decaying residual in the SD dynamics was observed in DO but not in DMSO, suggesting the formation of a stable solvation shell in water due to strong multi-site ligand-solvent hydrogen-bonding interactions, which is in agreement with the observed blue-shifted NO stretching frequency. This work demonstrates that small solvent molecules such as water can form a relatively rigid solvation shell for certain transition metal complexes due to cooperative ligand-solvent interactions and show slower dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.8b07247 | DOI Listing |
Chem Biol Interact
January 2025
Department of Biological Chemistry, Regional University of Cariri, 63105-000, Crato, CE, Brazil.
Radiat Prot Dosimetry
November 2024
Department of Radioecology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho, Kamikita, Aomori, 039-3212, Japan.
Inorg Chem
November 2024
São Carlos Institute of Chemistry, University of São Paulo, São Carlos 13560-970, SP,Brazil.
Ruthenium(II) tetraamine nitrosyl complexes with N-heterocyclic ligands are known for their potential as nitric oxide (NO) donors, capable of releasing NO through either direct photodissociation or one-electron reduction of the Ru(II)NO center. This study delivers a novel insight into the one-electron reduction mechanism for the model complex -[Ru(NO)(NH)(py)] (RuNOpy, py = pyridine) in phosphate buffer solution (pH 7.4).
View Article and Find Full Text PDFAdv Mater
December 2024
Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
Conventional bone tissue engineering materials struggle to reinstate physiological bone remodeling in a diabetic context, primarily due to the compromised repolarization of proinflammatory macrophages to anti-inflammatory macrophages. Here, leveraging single-cell RNA sequencing (scRNA-seq) technology, the pivotal role of nitric oxide (NO) and reactive oxygen species (ROS) is unveiled in impeding macrophage repolarization during physiological bone remodeling amidst diabetes. Guided by scRNA-seq analysis, we engineer a multienzymatic bone tissue engineering hydrogel scaffold (MEBTHS) composed is engineered of methylpropenylated gelatin hydrogel integrated with ruthenium nanozymes, possessing both Ru and Ru components.
View Article and Find Full Text PDFDalton Trans
November 2024
Université de Lorraine, CNRS, CRM2, UMR 7036, Nancy 54000, France.
A new nitro-nitrosyl complex [RuNO(Phen)(NO)OH] (1) was synthesized and characterized by X-ray diffraction, where Phen = 1,10-phenanthroline. The complex was crystallized in two different modifications without (1) and with a solvent molecule of DMF (1a). The photolysis process together with the determination of the quantum yield of NO release was investigated in acetonitrile solution using a special flow-through system for the simultaneous registration of infrared (IR) and optical absorption (UV-vis) spectra under irradiation with 450 nm light.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!