Mechanistic Insight into Etching Chemistry and HF-Assisted Etching of MgO-Al₂O₃-SiO₂ Glass-Ceramic.

Materials (Basel)

State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.

Published: September 2018

The present study focuses on the etching conditions and mechanism of MgO-Al₂O₃-SiO₂ glass-ceramic (MAS) in hydrofluoric acid (HF). The results show that the amorphous phase has 218 times higher etching rate than pure cordierite crystal at room temperature. In addition, the activation energies of cordierite and amorphous phases in the HF solution are 52.5 and 30.6 kJ/mol, respectively. The time () taken for complete dissolution of the amorphous phase depends on the HF concentration (). Based on the etching experiments, a new model is established and refined to assess the evolution. In addition, a highly crystalline cordierite phase, with the high specific surface area (59.4 m²·g) and mesoporous structure, has been obtained by HF etching. This paper presents novel insights into the etching chemistry and opens up avenues for further research in the area of cordierite-based catalytic ceramics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6165153PMC
http://dx.doi.org/10.3390/ma11091631DOI Listing

Publication Analysis

Top Keywords

etching chemistry
8
mgo-al₂o₃-sio₂ glass-ceramic
8
amorphous phase
8
etching
7
mechanistic insight
4
insight etching
4
chemistry hf-assisted
4
hf-assisted etching
4
etching mgo-al₂o₃-sio₂
4
glass-ceramic study
4

Similar Publications

Time-resolved Brownian tomography of single nanocrystals in liquid during oxidative etching.

Nat Commun

January 2025

School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.

Colloidal nanocrystals inherently undergo structural changes during chemical reactions. The robust structure-property relationships, originating from their nanoscale dimensions, underscore the significance of comprehending the dynamic structural behavior of nanocrystals in reactive chemical media. Moreover, the complexity and heterogeneity inherent in their atomic structures require tracking of structural transitions in individual nanocrystals at three-dimensional (3D) atomic resolution.

View Article and Find Full Text PDF

Achieving stable Zn anodes is essential for advancing high-performance Zn metal batteries. Here, we propose a Sabatier principle inspired bifunctional transition-metal (TM) interface to enable homogeneous Zn dissolution during discharging and dendrite-free Zn deposition during charging. Among various TM-coated Zn (TM@Zn) electrodes, Cu@Zn exhibits the highest reversibility and structural stability, attributed to the optimal interaction between Cu and Zn.

View Article and Find Full Text PDF

Innovating nanocatalysts with both high intrinsic catalytic activity and high selectivity is crucial for multi-electron reactions, however, their low mass/electron transport at industrial-level currents is often overlooked, which usually leads to low comprehensive performance at the device level. Herein, a Cl/O etching-assisted self-assembly strategy is reported for synthesizing a self-assembled gap-rich PdMn nanofibers with high mass/electron transport highway for greatly enhancing the electrocatalytic reforming of waste plastics at industrial-level currents. The self-assembled PdMn nanofiber shows excellent catalytic activity in upcycling waste plastics into glycolic acid, with a high current density of 223 mA cm@0.

View Article and Find Full Text PDF

Localized Nanopore Fabrication in Silicon Nitride Membranes by Femtosecond Laser Exposure and Subsequent Controlled Breakdown.

ACS Appl Mater Interfaces

January 2025

Division of Micro and Nanosystems (MST), School of Electrical Engineering and Computer Science (EECS), KTH Royal Institute of Technology, Stockholm SE-10044, Sweden.

Controlled breakdown has emerged as an effective method for fabricating solid-state nanopores in thin suspended dielectric membranes for various biomolecular sensing applications. On an unpatterned membrane, the site of nanopore formation by controlled breakdown is random. Nanopore formation on a specific site on the membrane has previously been realized using local thinning of the membrane by lithographic processes or laser-assisted photothermal etching under immersion in an aqueous salt solution.

View Article and Find Full Text PDF

Kirkendall Effect-Mediated Transformation of ZIF-67 to NiCo-LDH Nanocages as Oxidase Mimics for Multicolor Point-of-Care Testing of β-Galactosidase Activity and .

Anal Chem

January 2025

Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, Yunnan Province, P. R. China.

Early and portable detection of pathogenic bacteria is crucial for ensuring food safety, monitoring product quality, and tracing the sources of bacterial infections. Moving beyond traditional plate-culture counting methods, the analysis of active bacterial components offers a rapid means of quantifying bacteria. Here, metal-organic framework (MOF)-derived NiCo-layered double hydroxide nanosheets (LDHs), synthesized via the Kirkendall effect, were employed as highly effective oxidase mimics to generate reactive oxygen species (ROS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!