Molecular and Physio-Biochemical Characterization of Cotton Species for Assessing Drought Stress Tolerance.

Int J Mol Sci

Institute of Crop Science, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China.

Published: September 2018

Drought stress significantly limits cotton growth and production due to the necessity of water at every stage of crop growth. Hence, it is essential to identify tolerant genetic resources and understand the mechanisms of drought tolerance in economically and socially important plants such as cotton. In this study, molecular and physio-biochemical investigations were conducted by analyzing different parameters by following standard protocols in three different cotton species, namely TM-1 (), Zhongmian-16 (), and Pima4-S (). Drought stress significantly decreased plant growth, chlorophyll content, net photosynthetic rate (), stomatal conductance (), maximum photochemical efficiency of PSII (/), and relative water content. TM-1 resulted in more tolerance than the other two species. The accumulation of proline, soluble proteins, soluble sugars, hydrogen peroxide (H₂O₂), and superoxide radicals (O₂) increased significantly in TM-1. In addition, TM-1 maintained the integrity of the chloroplast structure under drought conditions. The relative expression level of drought-responsive genes including coding for transcription factors and other regulatory proteins or enzymes controlling genes (, , , , , , , , , and ) were higher in TM-1 under drought, conferring a more tolerant status than in Zhongmian-16 and Pima4-S. The findings of this research could be utilized for predicting a tolerant cotton genotype as well as evaluating prospective cotton species in the variety development program.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163957PMC
http://dx.doi.org/10.3390/ijms19092636DOI Listing

Publication Analysis

Top Keywords

cotton species
12
drought stress
12
molecular physio-biochemical
8
zhongmian-16 pima4-s
8
cotton
6
drought
6
tm-1
5
physio-biochemical characterization
4
characterization cotton
4
species
4

Similar Publications

Physio-biochemical and molecular mechanisms of low nitrogen stress tolerance in peanut (Arachis hypogaea L.).

Plant Mol Biol

January 2025

Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat and Xinxiang Key Laboratory of Crop Root Biology and Green Efficient Production, School of Life Sciences, Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.

Nitrogen (N) is a major plant nutrient and its deficiency can arrest plant growth. However, how low-N stress impair plant growth and its related tolerance mechanisms in peanut seedlings has not yet been explored. To counteract this issue, a hydroponic study was conducted to explore low N stress (0.

View Article and Find Full Text PDF

GhWRKY207 improves drought tolerance through promoting the expression of GhCSD3 and GhFSD2 in Gossypium hirsutum.

Plant Sci

January 2025

National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China. Electronic address:

Tryptophan-arginine-lysine-tyrosine (WRKY) transcription factors are essential regulators of drought tolerance in multiple plants. However, whether and how GhWRKY207 modulates cotton response to drought stress is unclear. In this study, we determined that GhWRKY207 expression was high in leaves and induced by drought stress.

View Article and Find Full Text PDF

Climate change is imposing multiple stressors on marine life, leading to a restructuring of ecological communities as species exhibit differential sensitivities to these stressors. With the ocean warming and wind patterns shifting, processes that drive thermal variations in coastal regions, such as marine heatwaves and upwelling events, can change in frequency, timing, duration, and severity. These changes in environmental parameters can physiologically impact organisms residing in these habitats.

View Article and Find Full Text PDF

Selenium nanoparticles are well known for their antioxidant and stress-mitigating properties. In our study, composite nanoformulations of selenium and chitosan have been synthesized. The synthesized composite nanoformulations were 50 nm in diameter, spherical in shape, and had higher antioxidant activities and stability than the selenium and chitosan nanoparticles.

View Article and Find Full Text PDF

Genome-Wide Identification and Functional Characterization of Gene Family Reveal Its Involvement in Response to Stress in Cotton.

Int J Mol Sci

January 2025

Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang 050000, China.

SKP1 constitutes the Skp1-Cullin-F-box ubiquitin E3 ligase (SCF), which plays a role in plant growth and development and biotic and abiotic stress in ubiquitination. However, the response of the gene family to abiotic and biotic stresses in cotton has not been well characterized. In this study, a total of 72 genes with the conserved domain of SKP1 were identified in four Gossypium species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!