No reliable biomarkers exist to identify athletes in various training states including functional overreaching (FOR), non-functional overreaching (NFOR), and overtraining syndrome (OTS). Participants (N = 10, age 38.3 ± 3.4 years) served as their own controls and in random, counterbalanced order either ran/cycled 2.5 h (70.0 ± 3.7% VO) three days in a row (FOR) or sat in the lab (rest) (separated by three weeks; 7:00⁻9:30 am, overnight fasted state). Participants provided fingerprick samples for dried blood spot samples (DBS) pre- and post-exercise/rest, and then during two recovery days. DBS proteins were measured with nanoLC-MS in data-independent acquisition (DIA) mode, and 593 proteins were identified and quantified. Proteins were considered for the FOR cluster if they were elevated during one of the two recovery days but not more than one of the exercise days (compared to rest). The generalized estimating equation (GEE) was used to identify proteins linked to FOR. A total of 13 proteins was linked to FOR and most were associated with the acute phase response and innate immune system activation. This study used a system-wide proteomics approach to define a targeted panel of blood proteins related to FOR that could form the basis of future NFOR- and OTS-based studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6161275PMC
http://dx.doi.org/10.3390/proteomes6030033DOI Listing

Publication Analysis

Top Keywords

functional overreaching
8
recovery days
8
proteins linked
8
proteins
6
detection functional
4
overreaching endurance
4
endurance athletes
4
athletes proteomics
4
proteomics reliable
4
reliable biomarkers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!