Molybdenum-doped zirconium tungstate (ZrWMoO₈) has been widely studied because of its large isotropic coefficient of negative thermal expansion (NTE). However, low density and poor sinterability limit its production and application. In this study, relative density greater than 90% single-phase ZrWMoO₈ (0.0 ≤ ≤ 1.0) sintered bodies were fabricated by spark plasma sintering (500⁻600 °C for 10 min) using ZrWMoO₇(OH)₂·2H₂O precursor powders as the starting material. High-temperature X-ray diffraction and thermomechanical analysis were used to investigate the change in the order⁻disorder phase transition temperature of the sintered materials; it gradually dropped from 170 °C at = 0.0 to 78 °C at = 0.5, and then to below room temperature at ≥ 0.7. In addition, all sintered bodies exhibited NTE behavior. The NTE coefficient was controllable by changing the value as follows: from -7.85 × 10 °C ( = 0) to -9.01 × 10 °C ( = 0.6) and from -3.22 × 10 °C ( = 0) to -2.50 × 10 °C ( = 1.0) before and after the phase transition, respectively. Rietveld structure refinement results indicate that the change in the NTE coefficient can be straightforwardly traced to the thermodynamic instability of the terminal oxygen atoms, which only have one coordination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6163418 | PMC |
http://dx.doi.org/10.3390/ma11091582 | DOI Listing |
Int J Mol Sci
December 2024
Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, 53127 Bonn, Germany.
Splanchnic vein thrombosis (SVT), which is particularly prevalent in myeloproliferative neoplasms (MPNs), has a multifactorial pathomechanism involving the anticoagulant protein C (PC) pathway. To better characterize the hypercoagulable state in SVT we assessed its key enzymes thrombin and activated PC (APC). The study population included 73 patients with SVT, thereof 36 MPN+, confirmed by bone marrow biopsy, 37 MPN-, and 30 healthy controls.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Center of Excellence "VERITAS", D. Serikbayev East Kazakhstan Technical University, Ust-Kamenogorsk 070004, Kazakhstan.
This paper reviews recent advances in the synthesis of cobalt-free high-strength tungsten carbide (WC) composites as sustainable alternatives to conventional WC-Co composites. Due to the high cost of cobalt, limited supply, and environmental concerns, researchers are exploring nickel, iron, ceramic binders, and nanocomposites to obtain similar or superior mechanical properties. Various synthesis methods such as powder metallurgy, encapsulation, 3D printing, and spark plasma sintering (SPS) are discussed, with SPS standing out for its effectiveness in densifying and preventing WC grain growth.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Xi'an Rare Metal Materials Institute Co., Ltd., Xi'an 710016, China.
One of the long-standing challenges in the field of titanium matrix composites is achieving the synergistic optimization of high strength and excellent ductility. When pursuing high strength characteristics in materials, it is often difficult to consider their ductility. Therefore, this study prepared a Ti1400 alloy and in situ synthesized TiC-reinforced (TiC + Ti1400)/TC4 composites using low-energy ball milling and spark plasma sintering technology, followed by hot rolling, to obtain titanium matrix composites with excellent mechanical properties.
View Article and Find Full Text PDFWater Res
December 2024
School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia.
The escalating challenges posed by water resource contamination, especially exacerbated by health concerns associated with microbial fungi threats, necessitate advanced disinfection technologies. Within this context, non-thermal plasma generated within bubble column reactors emerges as a promising antifungal strategy. The effects of direct plasma bubbles within different discharge modes and thus-produced plasma activated water (PAW) on the inactivation of Saccharomyces cerevisiae are investigated.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou 516001, China.
Cu/Diamond (Cu/Dia) composites are regarded as next-generation thermal dissipation materials and hold tremendous potential for use in future high-power electronic devices. The interface structure between the Cu matrix and the diamond has a significant impact on the thermophysical properties of the composite materials. In this study, Cu/Dia composite materials were fabricated using the Spark Plasma Sintering (SPS) process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!