The experience with a diagnostic technology based on rolling circle amplification (RCA), restriction fragment length polymorphism (RFLP) analyses, and direct or deep sequencing (Circomics) over the past 15 years is surveyed for the plant infecting geminiviruses, nanoviruses and associated satellite DNAs, which have had increasing impact on agricultural and horticultural losses due to global transportation and recombination-aided diversification. Current state methods for quarantine measures are described to identify individual DNA components with great accuracy and to recognize the crucial role of the molecular viral population structure as an important factor for sustainable plant protection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6164888 | PMC |
http://dx.doi.org/10.3390/v10090469 | DOI Listing |
Nanoscale
January 2025
Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
Rolling circle amplification (RCA) is a widely used method for the synthesis of DNA nanoparticles and macro-hydrogels. Several strategies, including oscillation-promoted entanglement of DNA chains, multi-round chain amplification, hybridization between DNA chains, and hybridization with functional moieties, were applied to synthesize DNA macro-hydrogels; alternatively, flower-like nanoparticles were also produced. Here we report a straightforward yet effective method to manipulate the morphology of RCA products from nanoparticles to 3D hydrogels using an additional cold treatment step of the circular DNA template prior to elongation using phi29 DNA polymerase.
View Article and Find Full Text PDFACS Nano
January 2025
Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, PR China.
Extracellular matrix (ECM)-based small-diameter vascular grafts (SDVGs, inner diameter (ID) < 6 mm) hold great promise for clinical applications. However, existing ECM-based SDVGs suffer from limited donor availability, complex purification, high cost, and insufficient mechanical properties. SDVGs with ECM-like structure and function, and good mechanical properties were rapidly prepared by optimizing common materials and preparation, which can improve their clinical prospects.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
A point-of-care testing (POCT) assay based on commercial HCG strip was proposed for miRNA21 detection by integrating RCA-HCR cascaded isothermal amplification with CRISPR/Cas12a. Three modules were integrated in the proposed platform: target amplification module composed of rolling circle amplification (RCA) cascaded with hybridization chain reaction (HCR), signal transduction module composed of CRISPR/Cas12a combined with HCG-agarose gel beads probes, and signal readout module composed of commercial HCG strips. The proposed RCA-HCR-CRISPR/Cas12a-HCG strip assay for miRNA21 detection had high sensitivity, and the limit of detection was as low as 37 fM.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Key Laboratory of Modern Preparations of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine Nanchang 330004, China National Key Laboratory of Creation of Modern Chinese Medicine with Classical Formulas Nanchang 330004, China Jiangxi Technology Innovation Center of Green Manufacturing of Chinese Medicine Nanchang 330004, China.
The construction method and simulation parameter settings for the discrete element model of Jianwei Xiaoshi Granules, as the primary material of Jianwei Xiaoshi Tablets, are not yet clear. The accuracy of the simulation model significantly influences the dynamic response characteristics between granules. Therefore, it is necessary to calibrate the parameters to improve the accuracy of the simulation parameters.
View Article and Find Full Text PDFGenome Res
January 2025
University Medical Center Utrecht, Utrecht University, Oncode Institute, Cyclomics
Shallow genome-wide cell-free DNA (cfDNA) sequencing holds great promise for non-invasive cancer monitoring by providing reliable copy number alteration (CNA) and fragmentomic profiles. Single nucleotide variations (SNVs) are, however, much harder to identify with low sequencing depth due to sequencing errors. Here we present Nanopore Rolling Circle Amplification (RCA)-enhanced Consensus Sequencing (NanoRCS), which leverages RCA and consensus calling based on genome-wide long-read nanopore sequencing to enable simultaneous multimodal tumor fraction estimation through SNVs, CNAs, and fragmentomics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!