Bone, especially cancellous bone, has been demonstrated to be nonhomogeneous. When applied to bone study, it raises the following question: How should the material properties of the bone from the available experimental data be interpolated?In this study, the finite element model of the femur has been built and the nonhomogeneous material properties of the femur have been assigned from the computed tomography (CT) data. These results have been applied to assess some common interpolation algorithms on the bone study, such as Linear Multivariate, Radial Basis, and Nearest Neighbor. It was found that among 3 tested algorithms, the RBAS algorithm has more points with errors from 0% to 15% than in the other 2 algorithms. When the supporting points jump from 160 to 288, the interpolation results significantly improve. When the finite element model reduces the element number from 38,230 to 13,424, all 3 algorithms have slightly better results.The interpolation of bone material properties should use 2 different approaches. The bone interpolation should be applied only to the bone with uniform structure. For the area with dramatic change of structure, the material properties can be defined directly. Among 3 tested algorithms, the Radial Basis algorithm performs best in the statistic study and should be the first choice in the bone study. In addition, the Radial Basis algorithm can be introduced into other methods to smooth the distribution of material properties. Also, with more supporting points (experimental data), the interpolation error becomes less. The interpolation approach offers a significant advantage in the finite element analysis: only 1 material ID needs to define the material interpolated from experimental data, unlike the several hundred material IDs defined for the elements derived from CT data that take material inhomogeneity into account.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6133422 | PMC |
http://dx.doi.org/10.1097/MD.0000000000012224 | DOI Listing |
Acc Chem Res
January 2025
School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.
ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
Department of Orthopedics, Suzhou Wujiang District Hospital of Traditional Chinese Medicine (Suzhou Wujiang District Second People's Hospital), Suzhou 215200, China.
Rotator cuff tears are the most common conditions in sports medicine and attract increasing attention. Scar tissue healing at the tendon-bone interface results in a high rate of retears, making it a major challenge to enhance the healing of the rotator cuff tendon-bone interface. Biomaterials currently employed for tendon-bone healing in rotator cuff tears still exhibit limited efficacy.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94T9PX, Republic of Ireland.
Physisorbents are poised to address global challenges such as CO capture, mitigation of water scarcity and energy-efficient commodity gas storage and separation. Rigid physisorbents, those adsorbents that retain their structures upon gas or vapour exposure, are well studied in this context. Conversely, cooperatively flexible physisorbents undergo long-range structural transformations stimulated by guest exposure.
View Article and Find Full Text PDFACS Nano
January 2025
The Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka 567-0047, Japan.
The intercalation of metal chlorides, and particularly iron chlorides, into graphitic carbon structures has recently received lots of attention, as it can not only protect this two-dimensional (2D) magnetic system from the effects of the environment but also substantially alter the magnetic, electronic, and optical properties of both the intercalant and host material. At the same time, intercalation can result in the formation of structural defects or defects can appear under external stimuli, which can affect materials performance. These aspects have received so far little attention in dedicated experiments.
View Article and Find Full Text PDFCommun Phys
January 2025
Department of Physics and Astronomy, the University of Manchester, Manchester, UK.
Two-dimensional materials with flat electronic bands are promising for realising exotic quantum phenomena such as unconventional superconductivity and nontrivial topology. However, exploring their vast chemical space is a significant challenge. Here we introduce elf, an unsupervised convolutional autoencoder that encodes electronic band structure images into fingerprint vectors, enabling the autonomous clustering of materials by electronic properties beyond traditional chemical paradigms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!