Cytokine sensing is challenging due to their typically low abundances in physiological conditions. Nanomaterial fabricated interfaces demonstrated unique advantages in ultrasensitive sensing. Here, we demonstrate an amperometric sensing device based on graphene oxide (GO) and structure-switching aptamers for long-term detection of cytokines in a living organism. The device incorporates a single layer of GO acting as a signal amplifier on glassy carbon electrodes. The hairpin aptamers specific to interferon-γ (IFN-γ), which were loaded with redox probes, are covalently attached to GO to serve as biorecognition moieties. IFN-γ was able to trigger the configuration change of aptamers while releasing the trapped redox probes to introduce the electrochemical signal. This in vivo device was capable of quantitatively and dynamically detecting IFN-γ down to 1.3 pg mL secreted by immune cells in cell culture medium with no baseline drift even at a high concentration of other nonspecific proteins. The biocompatible devices were also implanted into subcutaneous tissue of enteritis mice, where they performed precise detection of IFN-γ over 48 h without using physical barriers or active drift correction algorithms. Moreover, the device could be reused even after multiple rounds of regeneration of the sensing interface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b13518 | DOI Listing |
Chem Sci
January 2025
Instituto de Carboquímica (ICB-CSIC) C/Miguel Luesma Castán 4 E-50018 Zaragoza Spain
Fluorescent nitrogen-doped carbon dots (N-GQDs) with long-wavelength emission properties are of increased interest for technological applications. They are widely synthesized through the solvothermal treatment of graphene oxide (GO) using ,-dimethylformamide (DMF) as a cleaving and doping agent. However, this process simultaneously generates undesired interfering blue-emissive by-products.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University Yoshida-honmachi, Sakyo-ku Kyoto 606-8501 Japan
Chemical etching of silicon assisted by graphene oxide (GO) has been attracting attention as a new method to fabricate micro- or nano-structures. GO promotes the reduction of an oxidant, and holes are injected into silicon, resulting in the preferential dissolution of the silicon under GO. In the conventional etching method with GO, the selectivity of the etching was low due to the stain etching caused by nitric acid.
View Article and Find Full Text PDFRSC Adv
January 2025
College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen University Shenzhen 518060 PR China +86-0755-26536239 +86-0755-26538236.
[This corrects the article DOI: 10.1039/C7RA02764H.].
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
The adoption of carbon capture, utilization, and storage (CCUS) technology is increasingly prevalent, driven by the global initiative to conserve energy and reduce emissions. Nevertheless, CCUS has the potential to induce corrosion in equipment, particularly in high-pressure environments containing carbon dioxide (CO). Therefore, anti-corrosion protection is necessary for the metal utilized for CO production and storage equipment.
View Article and Find Full Text PDFAnal Chim Acta
March 2025
Zhejiang Key Laboratory of Advanced Optical Functional Materials and Devices, Ningbo University, Ningbo, 315211, China; Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo University, Ningbo, 315211, China. Electronic address:
Background: Permethrin is a pesticide used to kill insects, and once used in excess, it poses a great threat to the environment and human health, therefore, it is necessary to realize the rapid and accurate detection of permethrin. Fiber optic surface enhanced Raman scattering (SERS) probes have the advantages of small volume and can be used for remote monitoring, which have great potential for application in achieving in-situ detection of pesticide residues.
Results: Fiber taper waist (FTW) SERS probes modified by silver nanocubes-graphene oxide (Ag NCs-GO) composite structures were prepared for in situ detection of permethrin in lake water.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!