To evaluate task induced motor fatigue in a well-established finger tapping task, we analyzed tapping parameters and included the time course of measures of force. We hypothesized that a decline in tapping force would reflect task induced motor fatigue, defined by a lengthening of inter-tap intervals (ITI). A secondary aim was to investigate the reliability of tapping data acquisition with the force sensor. Results show that, as expected, tapping speed decreased linearly over time, due to both an increase of ITI and tap duration. In contrast, tapping force increased non-linearly over time and was uncorrelated to changes in tapping speed. Force data could serve as a measure to characterize task induced motor fatigue. Force sensors can assess a decline in tapping speed as well as an independent increase of tapping force. We argue that the increase of force reflects central compensation, i.e. perception of fatigue, due to an increase in task effort and difficulty.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00222895.2018.1495172DOI Listing

Publication Analysis

Top Keywords

motor fatigue
16
task induced
12
induced motor
12
tapping force
12
tapping speed
12
force
9
tapping
9
decline tapping
8
task
6
motor
5

Similar Publications

The use of asfotase alfa, a bone-targeted recombinant alkaline phosphatase (ALP) enzyme, for the treatment of adult-onset hypophosphatasia (HPP) remains controversial, particularly in patients without evident bone abnormalities. We report the case of a 41-year-old woman with a history of Graves' disease, who presented with progressive joint pain and severe fatigue. Despite the absence of bone lesions, the patient was diagnosed with HPP based on persistently low alkaline phosphatase levels, family history, and a novel heterozygous ALPL variant (p.

View Article and Find Full Text PDF

Pediatric Sleep Quality and Parental Stress in Neuromuscular Disorders: Descriptive Analytical Study.

Asian Pac Isl Nurs J

January 2025

Nursing Care Research Center, Clinical Sciences Institute, Nursing Faculty, Baqiyatallah University of Medical Sciences, Vanak Square, Tehran, Iran, 98 9127297199.

Background: Neuromuscular disorders (NMDs) constitute a heterogeneous group of disorders that affect motor neurons, neuromuscular junctions, and muscle fibers, resulting in symptoms such as muscle weakness, fatigue, and reduced mobility. These conditions significantly affect patients' quality of life and impose a substantial burden on caregivers. Spinal muscular atrophy (SMA) is a relatively common NMD in children that presents in various types with varying degrees of severity.

View Article and Find Full Text PDF

Transcutaneous vagus nerve stimulation for Parkinson's disease: a systematic review and meta-analysis.

Front Aging Neurosci

January 2025

Affiliated Rehabilitation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Background: Transcutaneous vagus nerve stimulation (tVNS) has emerged as a novel noninvasive adjunct therapy for advanced Parkinson's disease (PD), yet no quantitative analysis had been conducted to assess its therapeutic effect.

Objectives: This review aimed to investigate the efficacy of tVNS on motor function, other potential clinical targets and its safety in various treatment conditions.

Methods: We searched six databases for randomized controlled trials (RCTs) that involved treating PD patients with tVNS.

View Article and Find Full Text PDF

Multiple sclerosis (MS) unfavorably affects working capacity. The Comprehensive International Classification of Functioning, Disability and Health Core Set for MS (cICF-MS), issued by the World Health Organization, has not yet been extended to evaluate working capacity level (WCL). To evaluate the relative importance of cICF-MS categories in relation to WCL.

View Article and Find Full Text PDF

Background: Sports fatigue in soccer athletes has been shown to decrease neural activity, impairing cognitive function and negatively affecting motor performance. Transcranial direct current stimulation (tDCS) can alter cortical excitability, augment synaptic plasticity, and enhance cognitive function. However, its potential to ameliorate cognitive impairment during sports fatigue remains largely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!