The phytochemical study of Euphorbia pedroi led to the isolation of a new tetracyclic triterpenoid with an unusual spiro scaffold, spiropedroxodiol (1), along with seven known terpenoids (2-8). Aiming at obtaining compounds with improved multidrug-resistance (MDR) reversal activity, compound 8, an ent-abietane diterpene, was derivatized by introducing nitrogen-containing and aromatic moieties, yielding compounds 9-14. The structures of compounds were characterized by detailed spectroscopic analysis, including 2D NMR experiments (COSY, HMQC/HSQC, HMBC, and NOESY). Compounds 1-14 were evaluated for their MDR-reversing activity on human ABCB1 gene transfected mouse lymphoma cells (L5178Y-MDR) through a combination of functional and chemosensitivity assays. The natural compounds 1-8 were further evaluated on resistant human colon adenocarcinoma cells (Colo320), and, additionally, their cytotoxicity was assessed on noncancerous mouse (NIH/3T3) and human (MRC-5) embryonic fibroblast cell lines. While spiropedroxodiol (1) was found to be a very strong MDR reversal agent in both L5178Y-MDR and Colo320 cells, the chemical modifications of helioscopinolide E (8) at C-3 positively contributed to increase the MDR reversal activity of compounds 10, 12, and 13. Furthermore, in combination assays, compounds 1 and 7-14 enhanced synergistically the cytotoxicity of doxorubicin. Finally, by means of molecular docking, the key residues and binding modes by which compounds 1-14 may interact with a murine P-glycoprotein model were identified, allowing additional insights on the efflux modulation mechanism of these compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jnatprod.8b00326DOI Listing

Publication Analysis

Top Keywords

mdr reversal
12
compounds
9
euphorbia pedroi
8
reversal activity
8
compounds 1-14
8
terpenoids euphorbia
4
pedroi multidrug-resistance
4
multidrug-resistance reversers
4
reversers phytochemical
4
phytochemical study
4

Similar Publications

Medicine is increasingly supported by software, with digital health technologies offering innovative ways to capture insights and drive therapies. Globally, medical device software must follow regulatory processes based on risk classification. The introduction of MDR represents a significant shift in risk-based classification for Medical Devices in Europe, including classification Rule 11 for software, which has caused significant discussions among European regulators.

View Article and Find Full Text PDF

Background: Lenacapavir is a highly potent first-in-class inhibitor of HIV-1 capsid approved for the treatment of heavily treatment-experienced (HTE) people with HIV-1 (PWH) harboring multidrug resistant (MDR) virus, in combination with an optimized background regimen (OBR). Resistance analyses conducted after 2 years of lenacapavir treatment in the phase 2/3 CAPELLA study are described.

Methods: CAPELLA enrolled viremic HTE PWH with resistance to 2 or more drugs per class in at least 3 of the 4 main drug classes.

View Article and Find Full Text PDF

Development and validation of a high-performance liquid chromatography method with fluorescence detection for the quantification of the resistance protein P-gp in cancer cells.

J Chromatogr B Analyt Technol Biomed Life Sci

January 2025

Université Clermont Auvergne, Institut Universitaire de Technologie, UMR INSERM-UCA, U1240, Imagerie Moléculaire et Stratégies Théranostiques (IMoST), 5 Avenue Blaise Pascal, 63000 Clermont-Ferrand, France.

A method using high-performance liquid chromatography coupled with fluorescence detection (HPLC-FLD) was developed and validated to quantify the innovative tool LightSpot®-FL-1, a selective permeability-glycoprotein (P-gp)-targeted fluorescent conjugate used to measure P-gp expression in cell samples. Quantifying P-gp is a major challenge in oncology as its overexpression in many cancer cells results in Multidrug Resistance (MDR) associated with chemotherapy failure. To develop the method reported herein, both sample preparation and analysis parameters were investigated.

View Article and Find Full Text PDF

Multidrug resistance (MDR) has become a major challenge in tumor chemotherapy, primarily associated with the overexpression of P-glycoprotein (P-gp). Inhibiting P-gp expression and function through redox dyshomeostasis has shown great potential for reversing MDR. Here, a nanoscale system of copper-based metal-organic framework (HA-CuMOF@DOX) modified with hyaluronic acid (HA) was constructed to overcome MDR via two-way regulation of redox homeostasis under hypoxia.

View Article and Find Full Text PDF

Transcriptomic analysis of sub-MIC Eugenol exposition on antibiotic resistance profile in Multidrug Resistant Enterococcus faecalis E9.8.

Microbiol Res

January 2025

Área de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, Jaén, Spain. Electronic address:

The spread of multidrug-resistant (MDR) bacteria and their resistance genes along the food chain and the environment has become a global threat aggravated by incorrect disinfection strategies. This study analysed the effect of induction by sub-inhibitory concentrations of eugenol - a major ingredient in clove essential oil commonly used in disinfectant agents - on the phenotypic and genotypic response of MDR Enterococcus faecalis E9.8 strain, selected based on the phenotypic response of other enterococci.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!