Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A discrete nanoscopic organic cage (OC1) has been synthesized from a phenothiazine based trialdehyde treating with chiral 1,2-cyclohexanediamine building block via dynamic imine bond formation followed by reductive amination. The cage compound has been characterized by several spectroscopic methods, which advocate that OC1 has trigonal prismatic shape formed via [2 + 3] self-assembled imine condensation followed by imine reduction. This newly designed cage has aromatic walls and porous interior decorated with two cyclic thioether and three vicinal diamine moieties suitable for binding gold ions to engineer the controlled nucleation and stabilization of ultrafine gold nanoparticles (AuNPs). The functionalized confined pocket of the cage has been used for the controlled synthesis of AuNPs with narrow size distribution via encapsulation of Au(III) ions. Inductively coupled plasma mass spectrometric (ICP-MS) analysis revealed that the composite Au@OC1 has very high (∼68 wt %) gold loading. In distinction, reduction of gold salts in absence of the cage yielded structureless agglomerates. The fine-dispersed cage anchored AuNPs (Au@OC1) have been finally used as potential heterogeneous photocatalyst for very facile and selective conversion of nitroarenes to respective azo compounds at ambient temperature in just 2 h reaction time. Exceptional chemical stability and reusability without any agglomeration of AuNPs even after several cycles of use are the potential features of this material. The composite Au@OC1 represents the first example of organic cage supported gold nanoparticles as photocatalyst.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.8b07767 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!