Photolabile protecting groups are widely used to trigger oligonucleotide activity. The ON/OFF-amplitude is a critical parameter. An experimental setup has been developed to identify protecting group derivatives with superior caging properties. Bulky rests are attached to the cage moiety via Cu-catalyzed azide-alkyne cycloaddition post-synthetically on DNA. Interestingly, the decrease in melting temperature upon introducing o-nitrobenzyl-caged (NPBY-) and diethylaminocoumarin-cages (DEACM-) in DNA duplexes reaches a limiting value. NMR spectroscopy was used to characterize individual base-pair stabilities and determine experimental structures of a selected number of photocaged DNA molecules. The experimental structures agree well with structures predicted by MD simulations. Combined, the structural data indicate that once a sterically demanding group is added to generate a tri-substituted carbon, the sterically less demanding cage moiety points towards the neighboring nucleoside and the bulkier substituents remain in the major groove.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201804040DOI Listing

Publication Analysis

Top Keywords

cage moiety
8
experimental structures
8
sterically demanding
8
optimal destabilization
4
dna
4
destabilization dna
4
dna double
4
double strands
4
strands single-nucleobase
4
single-nucleobase caging
4

Similar Publications

Charge Manipulation of Porous Coordination Cages Tunes the Efficiency and Selectivity in Electrochemical Synthesis.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, Hunan, China.

Electrocatalytic synthesis of high-value chemicals has been attracting growing interest owing to its environmentally benign reaction pathways. Among these processes, the electrocatalytic reduction of nitrate (NO ) to ammonia (NH), known as NORR, and the oxidation of 5-hydroxymethylfurfural (HMFOR) stand out as two cornerstone reactions; yet, their efficiency and selectivity pose ongoing challenges. In this study, we introduce a charge manipulation approach for the design of highly efficient electrocatalysts tailored for the simultaneous coupling of NORR and HMFOR.

View Article and Find Full Text PDF

Zirconium-based porous coordination cages have been widely studied and have shown to be potentially useful for many applications as a result of their tunability and stability, likely as a result of their status as a molecular equivalent to the small 8 Å tetrahedral pores of UiO-66 (Zr(μ-O)(μ-OH)(COH)). Functional groups attached to these molecular materials endow them with a range of tunable properties. While so-called multivariate MOFs containing multiple types of functional groups on different bridging ligands within a structure are common, incorporating multiple functional moieties in permanently microporous molecular materials has proved challenging.

View Article and Find Full Text PDF

The synthesis and characterization of a novel bis-urea-based cage receptor for anions (3S,15S)-3,15,20,25-tetramethyl-1,4,6,12,14,17,20,25-octaazatricyclo[15.5.5.

View Article and Find Full Text PDF

Solvent-Directed Social Chiral Self-Sorting in PdL Coordination Cages.

J Am Chem Soc

November 2024

Department of Chemistry and Chemical Biology, TU Dortmund University, Otto Hahn Str. 6, 44227 Dortmund, Germany.

A family of Pd cages prepared from ligands based on an axially chiral diamino-[1,1'-biazulene] motif (serving as a unique azulene-based surrogate of the ubiquitous BINOL moiety) is reported. We show that preparing a cage starting from the racemate of a shorter bis-monodentate ligand derivative, equipped with pyridine donor groups, leads to integrative ("social") chiral self-sorting, exclusively yielding the product, but only in a selection of solvents. This phenomenon is driven by individual solvent molecules acting as hydrogen bonding tethers between the amino groups of neighboring ligands, thereby locking the final coordination cage in a single isomeric form.

View Article and Find Full Text PDF

Targeted isolation of antiviral cinnamoylphloroglucinol-terpene adducts from by building blocks-based molecular networking approach.

Acta Pharm Sin B

October 2024

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China.

The building blocks-based molecular network (BBMN) strategy was applied to the phytochemical investigation of , leading to the targeted isolation of eighteen novel cinnamoylphloroglucinol-terpene adducts (CPTAs) with diverse skeleton types (cleistoperones A-R, -). Their structures including absolute configurations were determined by extensive spectroscopic methods, quantum chemical calculations, and single-crystal X-ray crystallographic experiments. Cleistoperone A (), consisting of a cinnamoylphloroglucinol motif and two linear monoterpene moieties, represents an unprecedented macrocyclic CPTA, whose densely functionalized tricyclo[15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!