The coherent magnon state representation is employed to investigate the quantum-statistical behavior of the nonlinear excitation of magnons in ferromagnets. Both the long-range magnetic dipole-dipole and short-range exchange interactions are included, along with a static longitudinal applied field and a microwave pumping field in the perpendicular orientation. Within a microscopic (or Hamiltonian-based) approach the total Hamiltonian is transformed from spin operators to a normal-mode set of boson creation and annihilation operators. When the three-magnon interactions are included, it is found that the microwave pumping field may be used to control the nonlinear statistical properties of the system. From a study of the time evolution of the system we deduce the average number of magnons, the super-Poissonian statistical behavior, and the occurrence of magnon squeezing. We also compare the results with the case where the microwave pumping field is in the parallel orientation, and it is found that there are important differences in the time dependence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/aadfff | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
William H. Miller III Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218.
Introducing an experimental technique of time-resolved inelastic neutron scattering (TRINS), we explore the time-dependent effects of resonant pulsed microwaves on the molecular magnet CrFPiv. The octagonal rings of magnetic Cr atoms with antiferromagnetic interactions form a singlet ground state with a weakly split triplet of excitations at 0.8 meV.
View Article and Find Full Text PDFNano Lett
January 2025
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China.
Modern detection technology has driven camouflage technology toward multispectral compatibility and dynamic regulation. However, developing such stealth technologies is challenging due to different frequency-band principles. Here, this work proposes a design concept for a fluid-actuated multispectral compatible smart stealth device that employs a deformable mechanochromic layer/elastomer with a channeled dielectric layer.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Skobeltsyn Institute of Nuclear Physics, Moscow State University, Leninskie gory, Moscow 119991, Russia.
An attenuation of visible probe radiation identified in earlier absorption studies of microwave plasma-activated CH/H/Ar gas mixtures is shown to arise from nanoparticles in under-pumped regions on opposing sides of a reactor used for diamond chemical vapor deposition. The present modeling studies highlight (i) ejection of Si-containing species into the gas phase by reactive radical etching of the quartz window through which the microwave radiation enters the reactor, enabled by suitably high window temperatures () and the synergistic action of near-window H atoms and CH radicals; (ii) subsequent processing of the ejected material, some of which are transported to and accumulate in stagnation regions in the entrance to the reactor side arms; and (iii) the importance of Si in facilitating homogeneous gas phase nucleation, clustering, and nanoparticle growth in these regions. The observed attenuation, its probe wavelength dependence, and its variations with changes in process conditions can all be rationalized by a combination of absorption and scattering contributions from Si/C/H containing nanoparticles with diameters in the range of 50-100 nm.
View Article and Find Full Text PDFNano Lett
December 2024
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
Magnetic sensing beyond the linear regime could broaden the frequency range of detectable magnetic fields, which is crucial to various microwave and quantum applications. Recently, nonlinear interactions in diamond nitrogen-vacancy (NV) centers are proposed to realize magnetic sensing across arbitrary frequencies. In this work, we enhanced these capabilities by exploiting the nonlinear spin dynamics in hybrid systems of NV centers and ferri- or ferromagnetic (FM) thin films.
View Article and Find Full Text PDFPhys Rev Lett
October 2024
Department of Physics, University of Nevada, Reno, Nevada 89557, USA.
We propose a general technique to produce cold spin-polarized molecules in the electronic states of Σ symmetry, in which rotationally excited levels are first populated by coherent microwave excitation, and then allowed to spin flip and relax via collisional quenching, which populates a single final spin state. The steady-state spin polarization is maximized in the regime, where collisional slip-flipping transitions in the ground rotational manifold (N=0) are suppressed by a factor of ≥10 compared to those in the first rotationally excited manifold (N=1), as generally expected for Σ-state molecules at temperatures below the rotational spacing between the N=0 and N=1 manifolds. We theoretically demonstrate the high selectivity of the technique for ^{13}C^{16}O molecules immersed in a cold buffer gas of helium atoms, achieving a high degree (≥95%) of nuclear spin polarization at 1 K.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!