Porous Carbon Hosts for Lithium-Sulfur Batteries.

Chemistry

State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries, of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.

Published: March 2019

Lithium-sulfur batteries (LSBs) are considered to be one of the most promising alternatives to the current lithium-ion batteries (LIBs) to meet the increasing demand for energy storage owing to their high energy density, natural abundance, low cost, and environmental friendliness. Despite great success, LSBs still suffer from several problems, including undermined capacity arising from low utilization of sulfur, unsatisfactory rate performance and poor cycling life owing to the shuttle effect of polysulfides, and poor electrical conductivity of sulfur. Under such circumstances, the design/fabrication of porous carbon-sulfur composite cathodes is regarded as an effective solution to overcome the above problems. In this review, different synthetic methods of porous carbon hosts and their corresponding integration into carbon-sulfur cathodes are summarized. The pore formation mechanism of porous carbon hosts is also addressed. The pore size effect on electrochemical performance is highlighted and compared. The enhanced mechanism of the porous carbon host on the sulfur cathode is systematically reviewed and revealed. Finally, the combination of porous carbon hosts and high-profile solid-state electrolytes is demonstrated, and the challenges to realize large-scale commercial application of porous carbon-sulfur cathodes is discussed and future trends are proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201803153DOI Listing

Publication Analysis

Top Keywords

porous carbon
20
carbon hosts
16
lithium-sulfur batteries
8
porous carbon-sulfur
8
carbon-sulfur cathodes
8
mechanism porous
8
porous
7
hosts
4
hosts lithium-sulfur
4
batteries lithium-sulfur
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!