Background: Investigation of DNA methylation in Alu repetitive elements (REs) was shown to be a promising field to explore transcriptional changes in human genome under disease condition. To scrutinize the association between Alu methylation and tuberculosis (TB) disease in children, the difference in Alu DNA methylation level was compared with healthy controls.

Methods: Whole-blood genomic DNA from 36 TB-infected children and 32 healthy controls was isolated, and the level of Alu repeat DNA methylation was examined by methylation-specific polymerase chain reaction.

Results: The median Alu methylation level in TB patients was 30% (Interquartile range [IQR], 25-30%), whereas in healthy controls, it was 75% (IQR, 50-75%) (P < 0.0001). The median level of DNA methylation of Alu RE in TB cases was significantly lower than healthy controls. Receiver operating characteristic curve analysis showed that the area under the curve for diagnosis was 0.969 (95% confidence interval, 0.936-1) (P < 0.0001), with 100% sensitivity and 84% specificity.

Conclusion: Our results point out that detection of Alu DNA methylation in whole-blood DNA may be clinically useful tool for the diagnosis and prognosis of TB disease in children.

Download full-text PDF

Source
http://dx.doi.org/10.4103/ijmy.ijmy_86_18DOI Listing

Publication Analysis

Top Keywords

dna methylation
20
healthy controls
12
methylation
8
alu
8
alu repetitive
8
repetitive elements
8
tuberculosis disease
8
methylation alu
8
alu methylation
8
disease children
8

Similar Publications

This study aimed to investigate the expression, prognostic significance, methylation, and immune invasion levels of secreted frizzled-related proteins (SFRP1-5) in colorectal cancer (CRC). Additionally, the relationship between SFRP1/2 methylation and immune infiltration in CRC was explored. The expression of SFRP1-5 was analyzed using several databases, including GEO, TCGA, TIMER, STRING, and GEPIA.

View Article and Find Full Text PDF

The safety of titanium dioxide (TiO), widely used in foods and personal care products, has been of ongoing concern. Significant toxicity of TiO has been reported, suggesting a risk to human health. To evaluate its potential epigenotoxicity, the effect of exposure to a TiO product to which humans could be exposed on DNA methylation, a primary epigenetic mechanism, was investigated using two human cell lines (Caco-2 (colorectal) and HepG2 (liver)) relevant to human exposure.

View Article and Find Full Text PDF

Background: Thiopurine methyltransferase (TPMT) plays a crucial role in the detoxification of thiopurine drugs, including the antimetabolites azathioprine and 6-mercaptopurine (6-MP) used to treat autoimmune diseases and various cancers. These drugs interfere with DNA synthesis by inhibiting the production of purine-containing nucleotides, leading to the death of rapidly dividing cells. TPMT inactivates thiopurine drugs by methylating at the thiol group.

View Article and Find Full Text PDF

species are known to produce various secondary metabolites with polyketide structures, including Monacolins, pigments, and citrinin. This study investigates the effects of 5-azacytidine on M1 and RP2. The dry weight, red, yellow, and orange pigment values, and Monacolin K yield of both strains were measured, and their hyphae observed through electron microscopy.

View Article and Find Full Text PDF

Morning-time heart attacks are associated with an ablation in the sleep-time dip in blood pressure, the mechanism of which is unknown. The epigenetic changes are the hallmark of sleep and circadian clock disruption and homocystinuria (HHcy). The homocystinuria causes ablation in the dip in blood pressure during sleep.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!