In this study, the use of a dual-chamber microbial fuel cell for the production of bioelectricity from a food residue biomass (FORBI) product was investigated. Food residue biomass was produced by drying and shredding the pre-sorted fermentable fraction of household food waste collected door-to-door in the Municipality of Halandri, Athens, Greece. Different organic loads of food residue biomass expressed as chemical oxygen demand (COD) were examined (0.7, 0.9, 1.4, 2.8, 6 and 14 g COD L, respectively). It was observed that an increase of the initial concentration of the final extract resulted in a corresponding increase in the operating time. The microbial fuel cell potential increased from 33.3 mV to 46 mV as the concentration was increased from 0.7 to 14 g COD L. The best performance in terms of maximum power density (29.6 mW m) corresponding to a current density of 88 mA m was observed for 6 g COD L. Setting the external resistance at its optimal value (R = 2 kΩ) as determined by polarisation experiments, P drastically increased to 13.7 and 17.3 Joule (g FORBI) in two consecutive cycles. The results demonstrate that readily biodegradable substrates, such as food residue biomass, can be effectively used for enhanced bioelectricity harvesting in a microbial fuel cell.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0734242X18796935DOI Listing

Publication Analysis

Top Keywords

microbial fuel
16
fuel cell
16
food residue
16
residue biomass
16
dual-chamber microbial
8
food
5
bioelectricity production
4
production fermentable
4
fermentable household
4
household waste
4

Similar Publications

Solid-state fermentation of lignocellulosic waste to produce feed protein is a means of realising solid waste. However, low efficiency and susceptibility to microbial contamination remain significant challenges in feed protein production through room-temperature solid-state fermentation. In this study, thermophilic microbiomes were enriched.

View Article and Find Full Text PDF

Monoterpene -pinene exhibits significant potential as an alternative fuel, widely recognized for its affordability and eco-friendly nature. It demonstrates multiple biological activities and has a wide range of applications. However, the limited supply of pinene extracted from plants poses a challenge in meeting the needs of the aviation industry and other sectors.

View Article and Find Full Text PDF

This paper presents the effect of environmentally friendly additives on selected parameters and microbial degradation of Marine Diesel Oil (MDO). Microbiological contamination is a serious problem in MDO and other petroleum products. For this reason, it was decided to investigate the effects of environmentally friendly additives such as silver solution and colloidal nanosilver, as well as effective liquid microorganisms and ceramic tubes with different percentages of them in diesel oil (MDO) on its selected parameters and inhibition of bacterial and fungal growth.

View Article and Find Full Text PDF

To limit damage from insect herbivores, plants rely on a blend of defensive mechanisms that includes partnerships with beneficial microbes, particularly those inhabiting roots. While ample evidence exists for microbially mediated resistance responses that directly target insects through changing phytotoxin and volatile profiles, we know surprisingly little about the microbial underpinnings of plant tolerance. Tolerance defenses counteract insect damage via shifts in plant physiology that reallocate resources to fuel compensatory growth, improve photosynthetic efficiency, and reduce oxidative stress.

View Article and Find Full Text PDF

Microbial Fuel Cells (MFCs) are innovative environmental engineering systems that harness the metabolic activities of microbial communities to convert chemical energy in waste into electrical energy. However, MFC performance optimization remains challenging due to limited understanding of microbial metabolic mechanisms, particularly with complex substrates under realistic environmental conditions. This study investigated the effects of substrate complexity (acetate vs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!