A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and future deployment of a 5 years allograft survival model for kidney transplantation. | LitMetric

Aim: Identifying kidney transplant patients at highest risk for graft loss prior to loss may allow for effective interventions to improve 5 years survival.

Methods: We performed a 10 years retrospective cohort study of adult kidney transplant recipients (n = 1747). We acquired data from electronic health records, United Network of Organ Sharing, social determinants of health, natural language processing data extraction, and real-time capture of dynamically evolving clinical data obtained within 1 year of transplant; from which we developed a 5 years graft survival model.

Results: Total of 1439 met eligibility; 265 (18.4%) of them experienced graft loss by 5 years. Graft loss patients were characterized by: older age, being African-American, diabetic, unemployed, smokers, having marginal donor kidneys and cardiovascular comorbidities. Predictive dynamic variables included: low mean blood pressure, higher pulse pressures, higher heart rate, anaemia, lower estimated glomerular filtration rate peak, increased tacrolimus variability, rejection and readmissions. This Big Data analysis generated a 5 years graft loss model with an 82% predictive capacity, versus 66% using baseline United Network of Organ Sharing data alone.

Conclusion: Our analysis yielded a 5 years graft loss model demonstrating superior predictive capacity compared with United Network of Organ Sharing data alone, allowing post-transplant individualized risk-assessed care prior to transitioning back to community care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6408984PMC
http://dx.doi.org/10.1111/nep.13488DOI Listing

Publication Analysis

Top Keywords

graft loss
20
years graft
16
united network
12
network organ
12
organ sharing
12
kidney transplant
8
loss model
8
predictive capacity
8
sharing data
8
years
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!