Lactobacillus acidophilus Alleviated Salmonella-Induced Goblet Cells Loss and Colitis by Notch Pathway.

Mol Nutr Food Res

MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, P. R. China.

Published: November 2018

Scope: The intestinal mucosal barrier, including the mucus layer, protects against invasion of enteropathogens, thereby inhibiting infection. In this study, the protective effect of Lactobacillus on the intestinal barrier against Salmonella infection is investigated. The underlying mechanism of its effect, specifically on the regulation of goblet cells through the Notch pathway, is also elucidated.

Methods And Results: Here, the protective effect of Lactobacillus on alleviating changes in the intestinal barrier caused by Salmonella infection is explored. It has been found that Salmonella typhimurium colonizes the colon and damages colonic mucosa. However, Lactobacillus acidophilus ATCC 4356 alleviates the colitis caused by Salmonella infection. Moreover, S. typhimurium infection causes colonic crypt hyperplasia with increased PCNA cells, while L. acidophilus administration resolves these pathological changes. In addition, it has been further demonstrated that Salmonella results in severe colitis associated with goblet cells, and Lactobacillus improves colitis similarly associated with goblet cells. Salmonella infection induces goblet cell loss and reduces MUC2 expression by increasing Dll1, Dll4, and HES1 expression, while L. acidophilus reverses epithelial damage by balancing the Notch pathway.

Conclusion: The study demonstrates that colitis improvement is controlled by Lactobacillus ATCC 4356 by regulation of the Notch pathway; this finding will be useful for prevention against animal S. typhimurium infection.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mnfr.201800552DOI Listing

Publication Analysis

Top Keywords

goblet cells
16
salmonella infection
16
notch pathway
12
lactobacillus acidophilus
8
protective lactobacillus
8
intestinal barrier
8
caused salmonella
8
atcc 4356
8
typhimurium infection
8
colitis associated
8

Similar Publications

Airway Basal Stem Cells Inflammatory Alterations in COVID-19 and Mitigation by Mesenchymal Stem Cells.

Cell Prolif

January 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

SARS-CoV-2 infection and the resultant COVID-19 pneumonia cause significant damage to the airway and lung epithelium. This damage manifests as mucus hypersecretion, pulmonary inflammation and fibrosis, which often lead to long-term complications collectively referred to as long COVID or post-acute sequelae of COVID-19 (PASC). The airway epithelium, as the first line of defence against respiratory pathogens, depends on airway basal stem cells (BSCs) for regeneration.

View Article and Find Full Text PDF

Background: Asthma is a prevalent respiratory disease, and its management remains largely unsatisfactory. Mesenchymal stem cells (MSCs) have been demonstrated to be efficacious in reducing airway inflammation in experimental allergic diseases, representing a potential alternative treatment for asthma. Migrasomes are recently identified extracellular vesicles (EVs) generated in migrating cells and facilitate intercellular communication.

View Article and Find Full Text PDF

Human organotypic colon in vitro microtissue: unveiling a new window into colonic drug disposition.

Eur J Pharm Sci

January 2025

Preclinical Sciences & Translational Safety, Janssen R&D, Turnhoutseweg 30, 2340, Beerse, Belgium. Electronic address:

The purpose of this study was to evaluate EpiColon, a novel human organotypic 3D colon microtissue prototype, developed to assess colonic drug disposition, with a particular focus on permeability ranking, and compare its performance to Caco-2 monolayers. EpiColon was characterized for barrier function using transepithelial electrical resistance (TEER), morphology via histology and immunohistochemistry, and functionality through drug transport studies measuring apparent permeability (P). Cutoff thresholds for the permeability of FITC-dextran 4 kDa (FD4), FITC-dextran 10 kDa (FD10S), and [C]mannitol were established to monitor microtissue integrity.

View Article and Find Full Text PDF

Label-free quantitative imaging of conjunctival goblet cells.

Ocul Surf

January 2025

Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673; Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673. Electronic address:

Purpose: To introduce and validate quantitative oblique back-illumination microscopy (qOBM) as a label-free, high-contrast imaging technique for visualizing conjunctival goblet cells (GCs) and assessing their functional changes.

Methods: qOBM was developed in conjunction with moxifloxacin-based fluorescence microscopy (MBFM), which was used for validating GC imaging. Initial validation was conducted with polystyrene beads, followed by testing on normal mouse conjunctiva under both ex-vivo and in-vivo conditions.

View Article and Find Full Text PDF

: This study aimed to evaluate the therapeutic effects of combined 5% lifitegrast (LF) and tocopherol (TCP) eye drops in a murine experimental dry eye (EDE) model. Female C57BL/6 were divided into seven groups: untreated controls, EDE control, EDE + 0.05% cyclosporin A (CsA), EDE + tocopherol (TCP), EDE + 5% LF, EDE + 5% LF + TCP (once daily), and EDE + 5% LF + TCP (twice daily).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!