AI Article Synopsis

  • SiO nanoparticles were added to the mesoporous TiO layer in perovskite solar cells to analyze how they impact performance.
  • Using SiO nanoparticles of 50 and 100 nm sizes enhanced cell performance primarily through increased photocurrent, aligning with theoretical expectations based on light scattering.
  • The modified solar cells showed reduced current-potential hysteresis, indicating that SiO nanoparticles also positively influenced ion accumulation at the perovskite interface, highlighting the need for careful optical management in optimizing solar cell technology.

Article Abstract

In this work, SiO nanoparticles (NPs) were integrated into the mesoporous TiO layer of a perovskite solar cell to investigate their effect on cell performance. Different concentrations of SiO/ethanol have been combined in TiO/ethanol to prepare pastes for the fabrication of the mesoporous layer with which perovskite solar cells have been fabricated. Addition of SiO NPs of 50 and 100 nm sizes produces an enhancement of cell performance mainly because of an improvement of the photocurrent. This increment is in good agreement with the theoretical predictions based on light scattering induced by dielectric SiO NPs. The samples using modified scaffolds with NPs also present a significant lower current-potential hysteresis indicating that NP incorporation also affects the ion accumulation at the perovskite interface, providing an additional beneficial effect. The results stress the importance of the appropriated management of the optical properties on further optimization of perovskite solar cell technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6120728PMC
http://dx.doi.org/10.1021/acsomega.8b01119DOI Listing

Publication Analysis

Top Keywords

perovskite solar
16
layer perovskite
12
mesoporous layer
8
solar cells
8
addition sio
8
sio nanoparticles
8
solar cell
8
cell performance
8
sio nps
8
perovskite
5

Similar Publications

Metal halide perovskites have shown exceptional potential in converting solar energy to electric power in photovoltaics, yet their application is hampered by limited operational stability. This stimulated the development of hybrid layered (two-dimensional, 2D) halide perovskites based on hydrophobic organic spacers, templating perovskite slabs, as a more stable alternative. However, conventional organic spacer cations are electronically insulating, resulting in charge confinement within the inorganic slabs, thus limiting their functionality.

View Article and Find Full Text PDF

A Wenzel Interfaces Design for Homogeneous Solute Distribution Obtains Efficient and Stable Perovskite Solar Cells.

Adv Mater

January 2025

College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.

The coffee-ring effect, caused by uneven deposition of colloidal particles in perovskite precursor solutions, leads to poor uniformity in perovskite films prepared through large-area printing. In this work, the surface of SnO is roughened to construct a Wenzel model, successfully achieving a super-hydrophilic interface. This modification significantly accelerates the spreading of the perovskite precursor solution, reducing the response delay time of perovskite colloidal particles during the printing process.

View Article and Find Full Text PDF

Computational Study of Chalcogenide-Based Perovskite Solar Cell Using SCAPS-1D Numerical Simulator.

Materials (Basel)

January 2025

Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700, Eastern Cape, South Africa.

Perovskite solar cells (PSCs) are regarded as extremely efficient and have significant potential for upcoming photovoltaic technologies due to their excellent optoelectronic properties. However, a few obstacles, which include the instability and high costs of production of lead-based PSCs, hinder their commercialization. In this study, the performance of a solar cell with a configuration of FTO/CdS/BaZrS/HTL/Ir was optimized by varying the thickness of the perovskite layer, the hole transport layer, the temperature, the electron transport layer (ETL)'s defect density, the absorber defect density, the energy band, and the work function for back contact.

View Article and Find Full Text PDF

Multifunctional Organic Molecule for Defect Passivation of Perovskite for High-Performance Indoor Solar Cells.

Materials (Basel)

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.

Perovskite solar cells (PSCs) can utilize the residual photons from indoor light and continuously supplement the energy supply for low-power electron devices, thereby showing the great potential for sustainable energy ecosystems. However, the solution-processed perovskites suffer from serious defect stacking within crystal lattices, compromising the low-light efficiency and operational stability. In this study, we designed a multifunctional organometallic salt named sodium sulfanilate (4-ABS), containing both electron-donating amine and sulfonic acid groups to effectively passivate the positively-charged defects, like under-coordinated Pb ions and iodine vacancies.

View Article and Find Full Text PDF

The experimental and theoretical study of photovoltage formation in perovskite solar cells under pulsed laser excitation at 0.53 μm wavelength is presented. Two types of solar cells were fabricated on the base of cesium-containing triple cation perovskite films: (1) Cs(FAMA)Pb(IBr) and (2) Cs(FAMA)PbSn(IBr).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!