RNA editing by RNA specific adenosine deaminase acting on RNA (ADAR) is increasingly being found to alter microRNA (miRNA) regulation. Editing of miRNA transcripts can affect their processing, as well as which messenger RNAs (mRNAs) they target. Further, editing of target mRNAs can also affect their complementarity to miRNAs. Notably, ADAR editing is often increased in malignancy with the effect of these RNA changes being largely unclear. In addition, numerous reports have now identified an array of miRNAs that directly contribute to various malignancies although the majority of their targets remain largely undefined. Here we propose that modulating the targets of miRNAs via mRNA editing is a frequent occurrence in cancer and an underappreciated participant in pathology. In order to more accurately characterize the relationship between these two regulatory processes, this study examined RNA editing events within mRNA sequences of two breast cancer cell lines (MCF-7 and MDA-MB-231) and determined whether or not these edits could modulate miRNA associations. Computational analyses of RNA-Seq data from these two cell lines identified over 50,000 recurrent editing sites within human mRNAs, and many of these were located in 3' untranslated regions (UTRs). When these locations were screened against the list of currently-annotated miRNAs we discovered that editing caused a subset (~9%) to have significant alterations to mRNA complementarity. One miRNA in particular, miR-140-3p, is known to be misexpressed in many breast cancers, and we found that mRNA editing allowed this miRNA to directly target the apoptosis inducing gene in MCF-7, but not in MDA-MB-231 cells. As these two cell lines are known to have distinct characteristics in terms of morphology, invasiveness and physiological responses, we hypothesized that the differential RNA editing of in these two cell lines could contribute to their phenotypic differences. Indeed, we confirmed through western blotting that inhibiting miR-140-3p increases expression of the protein product in MCF-7, but not MDA-MB-231, and further that inhibition of miR-140-3p also increases cellular growth in MCF-7, but not MDA-MB-231. Broadly, these results suggest that the creation of miRNA targets may be an underappreciated function of ADAR and may help further elucidate the role of RNA editing in tumor pathogenicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6128407 | PMC |
http://dx.doi.org/10.3390/pr6050042 | DOI Listing |
Sci Adv
January 2025
Department of Biostatistics and Health Data Science, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
Alzheimer's disease (AD) is the leading dementia among the elderly with complex origins. Despite extensive investigation into the AD-associated protein-coding genes, the involvement of noncoding RNAs (ncRNAs) and posttranscriptional modification (PTM) in AD pathogenesis remains unclear. Here, we comprehensively characterized the landscape of ncRNAs and PTM events in 1460 samples across six brain regions sourced from the Mount Sinai/JJ Peters VA Medical Center Brain Bank Study and Mayo cohorts, encompassing 33,321 long ncRNAs, 92,897 enhancer RNAs, 53,763 alternative polyadenylation events, and 900,221 A-to-I RNA editing events.
View Article and Find Full Text PDFCurr Atheroscler Rep
January 2025
Carbohydrate and Lipid Metabolism Research Unit, Department of Medicine, University of the Witwatersrand, Johannesburg, South Africa.
Purpose Of Review: Homozygous familial hypercholesterolaemia (HoFH) is characterized by marked elevation of low-density lipoprotein cholesterol (LDLC) and premature atherosclerotic cardiovascular disease. This is a review of novel pharmacological therapies to lower LDLC in patients with HoFH.
Recent Findings: Novel therapies can be broadly divided by whether their efficacy is dependent or independent of residual low-density lipoprotein receptor (LDLR) function.
Alzheimers Dement
December 2024
University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
Background: SNX19 is a key player in endolysosomal and autophagy pathways, which have been extensively reported in neuronal dysfunction and neurodegenerative diseases. Although genetic and cellular evidence suggests SNX19 contributes to neuropathology, the underlying mechanisms remain unknown. Here, we propose to study the mechanism in aging postmortem brain tissue at single cell level and model SNX19 in human induced pluripotent stem cell (hiPSCs) derived brain organoids.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The Jackson Laboratory, Bar Harbor, ME, USA.
Background: Determining the precise genetic mechanisms that contribute to LOAD, both in coding and noncoding variants, will enable a deeper understanding of pathogenesis and advance preclinical models for the testing of targeted therapeutics.
Methods: We have introduced candidate genetic variants in the EPHA1, BIN1, CD2AP, SCIMP, KLOTHO, PTK2B, ADAMTS4, IL1RAP, IL34, and PTPRB loci into a sensitized mouse model already harboring humanized amyloid-beta, APOE4, and Trem2.R47H alleles knocked in to a C57BL/6J background.
Alzheimers Dement
December 2024
John P. Hussman Institute for Human Genomics, Miller School of Medicine, Miami, FL, USA.
Background: We identified the missense variant Ser1038Cys (rs377155188) in the tetratricopeptide repeat domain 3 (TTC3) gene that segregate in a non-Hispanic white late onset Alzheimer disease (LOAD) family. This variant is predicted to be deleterious and extremely rare (MAF<0.01%).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!