This paper presents a modeling comparison on how stabilization of global climate change at about 2 °C above the pre-industrial level could affect economic and energy systems development in China and India. Seven General Equilibrium (CGE) and energy system models on either the global or national scale are soft-linked and harmonized with respect to population and economic assumptions. We simulate a climate regime, based on long-term convergence of per capita carbon dioxide (CO) emissions, starting from the emission pledges presented in the Copenhagen Accord to the United Nations Framework Convention on Climate Change and allowing full emissions trading between countries. Under the climate regime, Indian emission allowances are allowed to grow more than the Chinese allowances, due to the per capita convergence rule and the higher population growth in India. Economic and energy implications not only differ among the two countries, but also across model types. Decreased energy intensity is the most important abatement approach in the CGE models, while decreased carbon intensity is most important in the energy system models. The reduction in carbon intensity is mostly achieved through deployment of carbon capture and storage, renewable energy sources and nuclear energy. The economic impacts are generally higher in China than in India, due to higher 2010-2050 cumulative abatement in China and the fact that India can offset more of its abatement cost though international emission trading.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108064PMC
http://dx.doi.org/10.1007/s11027-014-9549-4DOI Listing

Publication Analysis

Top Keywords

economic energy
12
china india
12
climate regime
12
energy
8
energy implications
8
climate change
8
energy system
8
system models
8
carbon intensity
8
economic
5

Similar Publications

The rise of antimicrobial-resistant microorganisms (AMR) poses a significant global challenge to human health and economic stability. In response, various scientific communities are seeking safe alternatives to antibiotics. This study comprehensively investigates the antibacterial effects of red dye derived from Monascus purpureus against three bacterial pathogens: Salmonella typhimurium ATCC14028, Escherichia coli ATCC8739, and Enterococcus faecalis ATCC25923.

View Article and Find Full Text PDF

As India's population grows and urbanization accelerates, energy demand is increasing sharply while conventional sources fall behind. To tackle energy shortages and climate change, India must prioritize renewable energy sources (RES), which offer sustainable solutions. The country is rich in RES, which can enhance fuel mix for electricity generation.

View Article and Find Full Text PDF

Background: In this study, thermophilic pectinase-producing strains were isolated. Among all the isolates, strain No. 4 was identified as Aspergillus fumigatus BT-4 based on its morphology and 18 S rDNA analysis.

View Article and Find Full Text PDF

Changes in water, energy, and food (WEF) trade patterns may reshape water circulation patterns, leading to potential water supply and demand risks. Analysis of virtual water risk transmission characteristics and driving factors from the perspective of WEF trade is highly important for alleviating the risk of water shortages and promoting the efficient use of resources. In this paper, a set of methods for quantifying risk transmission values is constructed on the basis of China's interregional input-output model, and the key paths of interregional virtual water risk transmission caused by WEF trade are identified using innovative methods.

View Article and Find Full Text PDF

Spent mushroom substrate: A review on present and future of green applications.

J Environ Manage

January 2025

School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.

The cultivation of edible mushrooms plays a significant role in revitalizing numerous rural regions in China. However, this process generates a large amount of spent mushroom substrate (SMS). Traditional methods for handling SMS, such as random stacking and incineration, lead to resource waste and environmental pollution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!