Quantitative nuclear magnetic resonance (qNMR) has emerged as an easy, rapid and reproducible method for various pharmaceuticals. In the current study, a general qNMR approach for calibrating the purity of the thiopeptcin reference standard (also known as nocathiacin I) was developed using sulfadoxine as an internal standard. Experimental conditions, such as the relaxation delay time and number of scans, were systematically optimized, and the method was validated with different analytical parameters, including selectivity, stability, linearity, precision and robustness. To examine the reliability and feasibility of the present qNMR method, there was no significant difference in the quantification of this complex cyclic peptide compared to the mass balance method. The present study further exemplified that qNMR is a reliable and valuable approach for the assessing of absolute purity of small-molecule pharmaceuticals, which provides a useful tool for drug discovery and development.

Download full-text PDF

Source
http://dx.doi.org/10.2116/analsci.18P095DOI Listing

Publication Analysis

Top Keywords

absolute purity
8
purity thiopeptcin
8
thiopeptcin reference
8
reference standard
8
quantitative assessment
4
assessment absolute
4
standard h-nmr
4
h-nmr quantitative
4
quantitative nuclear
4
nuclear magnetic
4

Similar Publications

Absolute calibration methodology for non-uniform uranium and matrix distributions in large barrels of uranium-bearing solid waste.

Sci Rep

December 2024

Nuclear Safeguards and Physical Protection Department, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.

The effective implementation of domestic and international safeguards necessitates verification techniques for Nuclear Materials (NM). Even in the case of very small quantities of NMs, accounting for and analyzing such traces can provide insights into the mass balance of NMs and/or state activities, ensuring consistency in state declarations. This paper proposes and benchmarks an absolute calibration methodology for estimating the uranium-mass content in large-volume barrels (200 L).

View Article and Find Full Text PDF

An accurate IDMS-based method for absolute quantification of phytohemagglutinin, a major antinutritional component in common bean.

J Food Sci

December 2024

Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang, College of Life Sciences, China Jiliang University, Hangzhou, P.R. China.

Phytohemagglutinin (PHA), a natural tetramer comprising PHA-E and PHA-L subunits that preferentially bind to red and white blood cells, respectively, constitutes a significant antinutritional and allergenic factor in common bean seeds. The accurate measurement of PHA content is a prerequisite for ensuring food safety inspections and facilitating genetic improvements in common bean cultivars with reduced PHA levels. Currently, mainstream methods for PHA quantification involve hemagglutination assays and immunodetection, but these methods often require fresh animal blood and lack specificity and accuracy.

View Article and Find Full Text PDF

Background: Intranasal administration is a convenient route for drug delivery that can be applied for procedural sedation. However, there is currently limited exploration into fixed dosing regimens. This study was to investigate the pharmacokinetics (PK), pharmacodynamics (PD), bioavailability (BA) and safety of dexmedetomidine after fixed doses of intranasal and intravenous administration in healthy male and female subjects.

View Article and Find Full Text PDF

Background: Extracorporeal photopheresis (ECP) has been demonstrated as an effective treatment for graft-versus-host disease (GvHD). The inline system was developed by Therakos in 1987. Recently, Fresenius Kabi implemented an integration of cell separator Amicus and a UVA photoactivation device (Phelix), realizing an inline photopheresis system.

View Article and Find Full Text PDF

A synthesis of new enantiomerically enriched derivatives of (S)-α-aminopropionic acid, containing in the β-position 1,2,3-triazole groups coupled with a o-, m- and p-substituted phenyl residue, was developed based on Cu(I) catalyzed [3 + 2] cycloaddition of azides with alkynes. As the starting materials was used the square-planar Ni(II)complex of the Schiff base of propargylglycine with the chiral auxiliary BPB (Benzylprolylbenzophenone) and 1,4-substituted phenyl azides. The assignment of the (S)-absolute configuration of the α-carbon atom of the amino acid residue of the main diastereomeric complexes of the cycloaddition products was carried out on the basis of positive Cotton effects in the region of 480-580 nm of the circular dichroism spectra.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!