Aims: Temozolomide (TMZ) is an alkylating agent used for glioblastoma multiforme (GBM) treatment. Nevertheless, resistance to TMZ is a major obstacle to successful treatment of this cancer. The aim of the present study was to investigate the effects of TMZ and thymoquinone (TQ) on U87MG cell line.

Materials And Methods: The effect of TMZ and/or TQ on viability and invasion potential of U87MG cells was evaluated using various techniques including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, lactate dehydrogenase activity, cell invasion, migration, and adhesion assays. Enzyme-linked immunosorbent assay and polymerase chain reaction were used to study the expression and secretion of matrix metalloproteinases (MMPs).

Results: Combination of TMZ and TQ had a synergistic cytotoxic effect on U87MG cells. TMZ and/or TQ significantly reduced the potential of U87MG cells invasion. In addition, after treating with TMZ and/or TQ, there was a decrease in the levels of matrix matrix metalloproteinase 2 nad 9 (MMP 2 and 9) expression and secretion in U87MG cells.

Conclusions: The combination of TMZ and TQ may emerge as a promising strategy for the successful treatment of GBM.

Download full-text PDF

Source
http://dx.doi.org/10.4103/0973-1482.187241DOI Listing

Publication Analysis

Top Keywords

tmz and/or
12
u87mg cells
12
glioblastoma multiforme
8
tmz
8
successful treatment
8
potential u87mg
8
expression secretion
8
combination tmz
8
u87mg
6
synergistic temozolomide
4

Similar Publications

Objective: Primary tumors of the brain and a large percent of malignant brain tumors are gliomas. Gliomas comprise high-grade gliomas like glioblastoma multiforme (GBMs), many of which have mutation in the tumor suppressor p53 gene and low-grade gliomas (LGGs). LGGs can progress to GBMs due to various factors.

View Article and Find Full Text PDF

Background: Gliomas are common aggressive brain tumors with poor prognosis. Dephosphorylation-related biomarkers are in a void in gliomas. This study aims to construct a validated prognostic risk model for dephosphorylation, which will provide new directions for clinical treatment, prognostic assessment, and temozolomide (TMZ) resistance in glioma patients.

View Article and Find Full Text PDF

Background: Resistance to temozolomide (TMZ) remains is an important cause of treatment failure in patients with glioblastoma multiforme (GBM). ADAR1, as a member of the ADAR family, plays an important role in cancer progression and chemotherapy resistance. However, the mechanism by which ADAR1 regulates GBM progression and TMZ resistance is still unclear.

View Article and Find Full Text PDF

Protocatechuic aldehyde sensitizes BRAF-mutant melanoma cells to temozolomide through inducing FANCD2 degradation.

Med Oncol

January 2025

Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, 610106, China.

Temozolomide (TMZ)-based chemotherapy is a primary regimen for melanoma patients who have failed targeted therapy or immunotherapy. However, the low response rate of TMZ-based chemotherapy challenges the patients' prognosis. BRAF mutation is the most frequently mutated site in melanoma.

View Article and Find Full Text PDF

Purpose: Histone deacetylase 6 (HDAC6) plays a critical role in tumorigenesis and tumor progression, contributing to proliferation, chemoresistance, and cell motility by regulating microtubule architecture. Despite its upregulation in melanoma tissues and cell lines, the specific biological roles of HDAC6 in melanoma are not well understood. This study aims to explore the functional effects and underlying mechanisms of WT161, a selective HDAC6 inhibitor, in melanoma cell lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!