Cell Surface N-Glycans Influence Electrophysiological Properties and Fate Potential of Neural Stem Cells.

Stem Cell Reports

Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, Irvine, CA 92697, USA; Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA. Electronic address:

Published: October 2018

Understanding the cellular properties controlling neural stem and progenitor cell (NSPC) fate choice will improve their therapeutic potential. The electrophysiological measure whole-cell membrane capacitance reflects fate bias in the neural lineage but the cellular properties underlying membrane capacitance are poorly understood. We tested the hypothesis that cell surface carbohydrates contribute to NSPC membrane capacitance and fate. We found NSPCs differing in fate potential express distinct patterns of glycosylation enzymes. Screening several glycosylation pathways revealed that the one forming highly branched N-glycans differs between neurogenic and astrogenic populations of cells in vitro and in vivo. Enhancing highly branched N-glycans on NSPCs significantly increases membrane capacitance and leads to the generation of more astrocytes at the expense of neurons with no effect on cell size, viability, or proliferation. These data identify the N-glycan branching pathway as a significant regulator of membrane capacitance and fate choice in the neural lineage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6178213PMC
http://dx.doi.org/10.1016/j.stemcr.2018.08.011DOI Listing

Publication Analysis

Top Keywords

membrane capacitance
20
cell surface
8
fate potential
8
neural stem
8
cellular properties
8
fate choice
8
neural lineage
8
capacitance fate
8
highly branched
8
branched n-glycans
8

Similar Publications

The rapid and reliable detection of pathogenic bacteria remains a significant challenge in clinical microbiology. Consequently, the demand for simple and rapid techniques, such as antimicrobial peptide (AMP)-based sensors, has recently increased as an alternative to traditional methods. Melittin, a broad-spectrum AMP, rapidly associates with the cell membranes of various gram-positive and gram-negative bacteria.

View Article and Find Full Text PDF

Flow-Electrode capacitive deionization for enhanced selective separation of Ammonia, Phosphorus, and caproate from sewage sludge fermentation: Performance and mechanistic insights.

Bioresour Technol

January 2025

School of Environment and Ecology, Jiangnan University, Wuxi 214122 China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou University of Science and Technology, Suzhou 215011 China. Electronic address:

Caproic acid has broad applications and can be produced from activated sludge via fermentation, but its quality is hindered by ammonia (NH-N) and reactive phosphorus (RP) in the fermentation broth. However, flow-electrode capacitive deionization (FCDI), a novel ion separation technology that operates continuously without secondary pollution seems to be an efficient process that separates the ions. The results showed that at pH 5.

View Article and Find Full Text PDF

Recently, ionic thermoelectric supercapacitors have gained attention because of their high open circuit voltages, even for ions that are redox inactive. As a source of open circuit voltage (electromotive force), an asymmetry in electric double layers developed by the adsorption of ions at the electrode surfaces kept at different temperatures has previously been proposed. As another source, the Eastman entropy of transfer, which is related to the Soret coefficient, has been considered.

View Article and Find Full Text PDF

The placenta plays a critical role in nutrient and oxygen exchange during pregnancy, yet the effects of medicinal drugs on this selective barrier remain poorly understood. To overcome this, this study presents a cost-effective bioimpedance spectroscopy (BIS) system to assess tight junction integrity and monolayer formation in BeWo b30 cells, a widely used model of the multinucleated maternal-fetal exchange surface of the placental barrier. Cells were cultured on collagen-coated porous membranes and treated with forskolin to induce controlled syncytialization.

View Article and Find Full Text PDF

Laser-Induced Metal-Organic Framework-Derived Flexible Electrodes for Electrochemical Sensing.

ACS Appl Mater Interfaces

January 2025

Neuroelectronics, Munich Institute of Biomedical Engineering, Department of Electrical Engineering, School of Computation, Information and Technology, Technical University of Munich, Hans-Piloty-Str. 1, 85748 Garching, Germany.

The successful development of a metal-organic framework (MOF)-derived Co/CoO/C core-shell composite integrated into laser-induced graphitic (LIG) carbon electrodes for electrochemical sensing is reported. The sensors are fabricated via a direct laser scribing technique using a UV laser (355 nm wavelength) to induce the photothermolysis of rationally selected ZIF-67 into the LIG matrix. Electrochemical characterization reveals that the incorporation of the laser-scribed ZIF-67-derived composite on the electrode surface reduces the impedance more than 100 times compared with bare LIG sensors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!