Transporting epithelial cells like those that line the gut build large arrays of actin-supported protrusions called microvilli, which extend from the apical surface into luminal spaces to increase functional surface area. Although critical for maintaining physiological homeostasis, mechanisms controlling the formation of microvilli remain poorly understood. Here, we report that the inverse-bin-amphiphysin-Rvs (I-BAR)-domain-containing protein insulin receptor tyrosine kinase substrate (IRTKS) (also known as BAIAP2L1) promotes the growth of epithelial microvilli. Super-resolution microscopy and live imaging of differentiating epithelial cells revealed that IRTKS localizes to the distal tips of actively growing microvilli via a mechanism that requires its N-terminal I-BAR domain. At microvillar tips, IRTKS promotes elongation through a mechanism involving its C-terminal actin-binding WH2 domain. IRTKS can also drive microvillar elongation using its SH3 domain to recruit the bundling protein EPS8 to microvillar tips. These results provide new insight on mechanisms that control microvillar growth during the differentiation of transporting epithelial cells and help explain why IRTKS is targeted by enteric pathogens that disrupt microvillar structure during infection of the intestinal epithelium.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6156988 | PMC |
http://dx.doi.org/10.1016/j.cub.2018.07.022 | DOI Listing |
Anticancer Agents Med Chem
January 2025
Laboratory Animal Center, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, P.R. China.
Objective: The objective of this study is to examine the impact of KW-2478 combined with DDP on colorectal cancer cells both in vitro and in vivo and to elucidate the molecular mechanism of KW-2478 in colorectal cancer.
Methods: qRT-PCR and Western blot were employed to assess HSP90 mRNA and protein expression in normal intestinal epithelial and colorectal cancer cells. DLD-1 and HCT116 were selected for the experiment.
Stem Cells Int
January 2025
Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.
Pulmonary fibrosis (PF) is a lethal pathological change of fibrotic interstitial lung diseases (ILDs) with abundant fibroblasts proliferation after severely or continually alveolar epithelial cells (AECs) injury. Barely therapies are helpful for PF. Here we use bleomycin intratracheally injection to model PF with or without human umbilical cord-mesenchymal stem cells (hUC-MSCs) and/or nintedanib intervention.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Geriatric Respiratory and Critical Care, The First Affiliated Hospital of Anhui Medical University, Anhui Geriatric Institute, Hefei, Anhui, People's Republic of China.
Aim: We sought to investigate the impact of CpG oligodeoxynucleotides (CpG-ODN) administration on the lung and gut microbiota in asthmatic mice, specifically focusing on changes in composition, diversity, and abundance, and to elucidate the microbial mechanisms underlying the therapeutic effects of CpG-ODN and identify potential beneficial bacteria indicative of its efficacy.
Methods: HE staining were used to analyze inflammation in lung, colon and small intestine tissues. High-throughput sequencing technology targeting 16S rRNA was employed to analyze the composition, diversity, and correlation of microbiome in the lung, colon and small intestine of control, model and CpG-ODN administration groups.
Drug Des Devel Ther
January 2025
Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, People's Republic of China.
Introduction: Oxidative stress is an important cause of acetaminophen (APAP)-induced liver injury (AILI). Sakuranetin (Sak) is an antitoxin from the cherry flavonoid plant with good antioxidant effects. However, whether sakuranetine has a protective effect on APAP-induced liver injury is not clear.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States.
Current in vitro cell-based methods, relying on single cell types, have structural and functional limitations in determining lung drug permeability, which is a contributing factor affecting both local and systemic drug levels. To address this issue, we investigated a 3D human lung airway model generated using a cell culture insert, wherein primary human lung epithelial and endothelial cells were cocultured at an air-liquid interface (ALI). To ensure that the cell culture mimics the physiological and functional characteristics of airway tissue, the model was characterized by evaluating several parameters such as cellular confluency, ciliation, tight junctions, mucus-layer formation, transepithelial electrical resistance, and barrier function through assaying fluorescein isothiocyanate-dextran permeability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!