Unexpected fluctuations in weather parameters due to global climate change have been observed in all ecosystems worldwide. The aquatic ecosystem shelters a great diversity of fishes in the upper region of the ecosystem which adversely get affected due to their poikilothermic nature. The present study was designed to elucidate the impact of critical temperature minima (CTMin), lethal temperature minima (LTMin), critical temperature maxima (CTMax), and lethal temperature maxima (LTMax) on Channa striatus. Biologically synthesized silver nanoparticles (Ag-NPs) were evaluated for their potential to enhance thermal tolerance and improve the activities of biochemical enzymes of C. striatus reared under lead (Pb) and high temperature (34 °C) for 50 days. Three iso-caloric and iso-nitrogenous diets which included a basal diet and two supplemented diets with Ag-NPs @ 0.5 mg/kg, and 1 mg/kg were used in the study. Results suggested that CTMin and LTMin were significantly (p < 0.01) reduced and CTMax and LTMax were enhanced in the group fed with 0.5 mg/kg Ag-NPs supplemented feed. Pre-exposure to high temperature led to enhanced CTMax and LTMax in C. striatus. The biochemical enzymes involved in protein metabolism, carbohydrate metabolism, acetylcholine esterase and antioxidant activities were found to be normal in fish fed with 0.5 mg/kg Ag-NPs supplemented diet. Bioaccumulation of silver and Pb was determined in different fish tissues and experimental water. Overall, the incorporation of Ag-NPs at 0.5 mg/kg in diet can confer protection to fish against Pb and thermal stress and enhance thermal tolerance of C. striatus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtherbio.2018.08.011DOI Listing

Publication Analysis

Top Keywords

thermal tolerance
8
critical temperature
8
temperature minima
8
lethal temperature
8
temperature maxima
8
temperature
5
dietary nano-silver
4
nano-silver support
4
support discourage
4
discourage thermal
4

Similar Publications

The Dynamics of Symbiodiniaceae and Photosynthetic Bacteria Under High-Temperature Conditions.

Microb Ecol

January 2025

Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, China.

Coral thermal tolerance is intimately linked to their symbiotic relationships with photosynthetic microorganisms. However, the potential compensatory role of symbiotic photosynthetic bacteria in supporting Symbiodiniaceae photosynthesis under extreme summer temperatures remains largely unexplored. Here, we examined the seasonal variations in Symbiodiniaceae and photosynthetic bacterial community structures in Pavona decussata corals from Weizhou Island, Beibu Gulf, China, with particular emphasis on the role of photosynthetic bacteria under elevated temperature conditions.

View Article and Find Full Text PDF

Assessing how at-risk species respond to co-occurring stressors is critical for predicting climate change vulnerability. In this study, we characterized how young-of-the-year White Sturgeon () cope with warming and low oxygen (hypoxia) and investigated whether prior exposure to one stressor may improve the tolerance to a subsequent stressor through "cross-tolerance". Fish were acclimated to five temperatures within their natural range (14-22°C) for one month prior to assessment of thermal tolerance (critical thermal maxima, CTmax) and hypoxia tolerance (incipient lethal oxygen saturation, ILOS; tested at 20°C).

View Article and Find Full Text PDF

Anthropogenic climate change is projected to become a major driver of biodiversity loss, destabilizing the ecosystems on which human society depends. As the planet rapidly warms, the disruption of ecological interactions among populations, species and their environment, will likely drive positive feedback loops, accelerating the pace and magnitude of biodiversity losses. We propose that, even without invoking such amplifying feedback, biodiversity loss should increase nonlinearly with warming because of the non-uniform distribution of biodiversity.

View Article and Find Full Text PDF

Background: Treatment of deep carious lesions poses significant challenges in dentistry, as complete lesion removal risks compromising pulp vitality, while selective removal often reduces the longevity of restorations. Herein, we propose a minimally invasive approach using High-Intensity Focused Ultrasound (HIFU) for microscale removal of carious dentine. Concurrently, HIFU's antimicrobial effects against associated cariogenic biofilms and the corresponding thermal and biological impacts on surrounding tissues were investigated.

View Article and Find Full Text PDF

Improved S-bend optical waveguide loss formula verified by experiments.

Sci Rep

January 2025

Department of Electrical Engineering, Faculty of Science and Technology, University Al Azhar Indonesia, Jakarta, Indonesia.

Curvature of a dielectric waveguide always leads to attenuation of the mode power as it propagates through the curved region. In single mode guides, bending loss becomes significant as the radius of curvature reduces and is strongly dependent on the confinement of the guided mode, so that weakly guiding waveguides can tolerate only large radii of curvature. In this paper we verify our new theoretical version on power loss prediction of S-bend optical waveguides by using analytical theory based on integration of absorption coefficient and compare it to the experimental measurement of such waveguide bends.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!