uc.454 Inhibited Growth by Targeting Heat Shock Protein Family A Member 12B in Non-Small-Cell Lung Cancer.

Mol Ther Nucleic Acids

Department of Respiratory Medicine, The 2nd Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, Jiangsu 215004, China. Electronic address:

Published: September 2018

Transcribed ultraconserved regions (T-UCRs) classified as long non-coding RNAs (Lnc-RNAs) are transcripts longer than 200-nt RNA with no protein-coding capacity. Previous studies showed that T-UCRs serve as novel oncogenes, or tumor suppressors are involved in tumorigenesis and cancer progressive. Nevertheless, the clinicopathologic significance and regulatory mechanism of T-UCRs in lung cancer (LC) remain largely unknown. We found that uc.454 was downregulated in both non-small-cell LC (NSCLC) tissues and LC cell lines, and the downregulated uc.454 is associated with tumor size and tumors with more advanced stages. Transfection with uc.454 markedly induced apoptosis and inhibited cell proliferation in SPC-A-1 and NCI-H2170 LC cell lines. Above results suggested that uc.454 played a suppressive role in LC. Heat shock protein family A member 12B (HSPA12B) protein was negatively regulated by uc.454 at the posttranscriptional level by dual-luciferase reporter assay and affected the expressions of Bcl-2 family members, which finally induced LC apoptosis. The uc.454/HSPA12B axis furthers our understanding of the molecular mechanisms involved in tumor apoptosis, which may potentially serve as a therapeutic target for lung carcinoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023848PMC
http://dx.doi.org/10.1016/j.omtn.2018.05.004DOI Listing

Publication Analysis

Top Keywords

heat shock
8
shock protein
8
member 12b
8
lung cancer
8
induced apoptosis
8
uc454
6
uc454 inhibited
4
inhibited growth
4
growth targeting
4
targeting heat
4

Similar Publications

Activators of the 26S proteasome when protein degradation increases.

Exp Mol Med

January 2025

Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.

In response to extra- and intracellular stimuli that constantly challenge and disturb the proteome, cells rapidly change their proteolytic capacity to maintain proteostasis. Failure of such efforts often becomes a major cause of diseases or is associated with exacerbation. Increase in protein breakdown occurs at multiple steps in the ubiquitin-proteasome system, and the regulation of ubiquitination has been extensively studied.

View Article and Find Full Text PDF

Integrating genomic, hyperspectral imaging (HSI), and environmental data enhances wheat yield predictions, with HSI providing detailed spectral insights for predicting complex grain yield (GY) traits. Incorporating HSI data with single nucleotide polymorphic markers (SNPs) resulted in a substantial improvement in predictive ability compared to the conventional genomic prediction models. Over the course of several years, the prediction ability varied due to diverse weather conditions.

View Article and Find Full Text PDF

Dual targeting of HSP90 and BCL-2 in breast cancer cells using inhibitors BIIB021 and ABT-263.

Breast Cancer Res Treat

January 2025

Rafet Kayış Faculty of Engineering, Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Antalya, Turkey.

Purpose: The incidence of breast cancer has been increasing in recent years, and monotherapy approaches are not sufficient alone in the treatment of breast cancer. In the combined therapy approach, combining two or three different agents in lower doses can mitigate the side effects on living cells and tissues caused by high doses of chemical agents used alone. ABT-263 (navitoclax), a clinically tested Bcl-2 family protein inhibitor, has shown limited success in clinical trials due to the development of resistance to monotherapy in breast cancer cells.

View Article and Find Full Text PDF

The role of Aha1 in cancer and neurodegeneration.

Front Mol Neurosci

December 2024

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States.

The 90 kDa Heat shock protein (Hsp90) is a family of ubiquitously expressed molecular chaperones responsible for the stabilization and maturation of >400 client proteins. Hsp90 exhibits dramatic conformational changes to accomplish this, which are regulated by partner proteins termed co-chaperones. One of these co-chaperones is called the activator or Hsp90 ATPase activity homolog 1 (Aha1) and is the most potent accelerator of Hsp90 ATPase activity.

View Article and Find Full Text PDF

Selective inhibition of HSF1 expression in the heat shock pathway of keloid fibroblasts reduces excessive fibrosis in keloid.

Arch Dermatol Res

January 2025

Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu, 610041, Sichuan, China.

The stress response following burns may be a crucial factor in keloid formation, yet the underlying pathological mechanisms remain to be elucidated. This study initially investigated how heat shock factor 1 (HSF1) and heat shock proteins (HSPs) within the heat shock pathway influence keloid fibrosis, providing insights into the role of the heat shock response in keloid development. This study aims to further elucidate the role of the heat shock pathway in keloid fibrosis and investigate the specific function of HSF1 within this pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!