In order to understand the size distribution and the main kind of heavy metals in particulate matter on the lead and zinc smelting affected area, particulate matter (PM) and the source samples were collected in Zhuzhou, Hunan Province from December 2011 to January 2012 and the results were discussed and interpreted. Atmospheric particles were collected with different sizes by a cascade impactor. The concentrations of heavy metals in atmospheric particles of different sizes, collected from the air and from factories, were measured using an inductively coupled plasma mass spectrometry (ICP-MS). The results indicated that the average concentration of PM, chromium (Cr), arsenic (As), cadmium (Cd) and lead (Pb) in PM was 177.3 ± 33.2 μg/m, 37.3 ± 8.8 ng/m, 17.3 ± 8.1 ng/m, 4.8 ± 3.1 ng/m and 141.6 ± 49.1 ng/m, respectively. The size distribution of PM displayed a bimodal distribution; the maximum PM size distribution was at 1.1-2.1 μm, followed by 9-10 μm. The size distribution of As, Cd and Pb in PM was similar to the distribution of the PM mass, with peaks observed at the range of 1.1-2.1 μm and 9-10 μm ranges while for Cr, only a single-mode at 4.7-5.8 μm was observed. PM (64.7%), As (72.5%), Cd (72.2%) and Pb (75.8%) were associated with the fine mode below 2.1 μm, respectively, while Cr (46.6%) was associated with the coarse mode. The size distribution characteristics, enrichment factor, correlation coefficient values, source information and the analysis of source samples showed that As, Cd and Pb in PM were the typical heavy metal in lead and zinc smelting affected areas, which originated mainly from lead and zinc smelting sources.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jes.2018.04.018DOI Listing

Publication Analysis

Top Keywords

size distribution
24
lead zinc
16
zinc smelting
16
heavy metals
12
particulate matter
12
metals particulate
8
matter lead
8
smelting area
8
source samples
8
atmospheric particles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!