Inhibiting a spinal cord signaling pathway protects against ischemia injury in rats.

J Thorac Cardiovasc Surg

Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China. Electronic address:

Published: February 2019

Objective: The aim of the study was to examine whether the cannabinoid agonist WIN55212-2 could attenuate ischemic spinal cord injury (SCI) in rats through inhibition of GAPDH/Siah1 signaling.

Methods: Male Sprague-Dawley rats were distributed randomly into 5 groups: (1) sham group that received no aortic occlusion and injected intraperitoneally (i.p.) with vehicle control after reperfusion; (2) control group that received a 12-minute aortic occlusion and injected i.p. with vehicle control after reperfusion; (3) WIN55212-2 group (WIN) that received the aortic occlusion and injected i.p. with 1 mg/kg of WIN55212-2 after reperfusion; and (4) WIN55212-2 plus AM251 group and (5) WIN55212-2 plus AM630 group that received the same surgical operation as the WIN group, except that 1 mg/kg of AM251 or AM630 was injected i.p. 30 min before each dose of WIN55212-2 injection, respectively. Neurologic function was assessed 48 hours after reperfusion. Histopathologic examination was performed to determine the number of normal neurons in anterior spinal cord. Protein expression of active caspase-3, total caspase-3, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), inducible nitric oxide synthase (iNOS), nuclear factor kappa light chain enhancer of activated B cells (NF-κB), Siah1, tumor necrosis factor α, and interleukin 1β were determined with Western blot and enzyme-linked immunosorbent assay; coimmunoprecipitation assays were also used to determine GAPDH/Siah1 complexing. Finally, terminal deoxynucleotidyl transferase dUTP nick end labeling staining was used to determine neuronal apoptosis in the lumbar spinal cord.

Results: The nuclear translocation of GAPDH and Siah1 in the spinal cord was initiated after ischemic spinal cord injury (SCI) along with the increased formation of GAPDH/Siah1 complexes. However, the activation of GAPDH/Siah1 was blocked by WIN. In addition, the treatment of WIN55212-2 promoted neuronal survival in the spinal cord, reduced apoptosis and inflammation, and improved neurologic scores. Furthermore, these beneficial effects of WIN55212-2 were abolished by the combined treatment of the CB2 antagonist AM630, but not the CB1 antagonist AM251.

Conclusions: Our findings reveal GAPDH/Siah1 signaling cascades as a novel therapeutic target for ischemic SCI and identify WIN55212-2 with the potential to treat ischemic SCI by targeting this pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtcvs.2018.07.045DOI Listing

Publication Analysis

Top Keywords

spinal cord
24
group received
12
aortic occlusion
12
occlusion injected
12
win55212-2
9
ischemic spinal
8
cord injury
8
injury sci
8
received aortic
8
vehicle control
8

Similar Publications

Evaluation of transcriptomic changes after photobiomodulation in spinal cord injury.

Sci Rep

January 2025

Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined.

View Article and Find Full Text PDF

Microstructural white matter injury contributes to cognitive decline: Besides amyloid and tau.

J Prev Alzheimers Dis

February 2025

Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, PR China. Electronic address:

Background: Cognitive decline and the progression to Alzheimer's disease (AD) are traditionally associated with amyloid-beta (Aβ) and tau pathologies. This study aims to evaluate the relationships between microstructural white matter injury, cognitive decline and AD core biomarkers.

Methods: We conducted a longitudinal study of 566 participants using peak width of skeletonized mean diffusivity (PSMD) to quantify microstructural white matter injury.

View Article and Find Full Text PDF

Background: The associations of early-onset coronary heart disease (CHD) and genetic susceptibility with incident dementia and brain white matter hyperintensity (WMH) remain unclear. Elucidation of this problem could promote understanding of the neurocognitive impact of early-onset CHD and provide suggestions for the prevention of dementia.

Objectives: This study aimed to investigate whether observed and genetically predicted early-onset CHD were related to subsequent dementia and WMH volume.

View Article and Find Full Text PDF

Background: Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD.

View Article and Find Full Text PDF

Objectives: The population in the U.S., and across the world is aging rapidly which warrants an assessment of the safety of surgical approaches in elderly individuals to better risk stratify and inform surgeons' decision making for optimal patient care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!