The photophysical properties and photochemistry reactions of 2-(2-Hydroxy-phenyl)-4(3H)-quinazolinone (HPQ) system in different solutions are studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. Our theoretical investigation explores that an ultrafast barrier-free excited state intramolecular proton transfer (ESIPT) process occurs and the configuration twisting is found in the electronic excited state. In the polar protic methanol solution, the hydrogen-bonded complex composed by HPQ and two methanol molecules (HPQ-2M) could exist stably in the ground state. Upon photoexcitation the isolated HPQ is initially excited to the first excited state, while the HPQ-2M system is firstly excited to the S state and undergoes internal conversion (IC) to the S state. The intermolecular hydrogen bonds are strengthened in the excited state. The simulated electronic spectra agree well with the experimental results. The strengthening of the intermolecular hydrogen bonds is also confirmed by the calculated vibrational spectra. In addition, the intramolecular charge transfer happens in both HPQ and HPQ-2M systems from the frontier molecular orbital analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2018.08.054DOI Listing

Publication Analysis

Top Keywords

excited state
20
intermolecular hydrogen
12
hydrogen bonds
12
density functional
8
functional theory
8
state
7
excited
6
theoretical insights
4
insights excited-state
4
excited-state intramolecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!