Molecular Basis for Immunity Protein Recognition of a Type VII Secretion System Exported Antibacterial Toxin.

J Mol Biol

Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada L8S 4K1; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada L8S 4L8. Electronic address:

Published: October 2018

Gram-positive bacteria deploy the type VII secretion system (T7SS) to facilitate interactions between eukaryotic and prokaryotic cells. In recent work, we identified the TelC protein from Streptococcus intermedius as a T7SS-exported lipid II phosphatase that mediates interbacterial competition. TelC exerts toxicity in the inner wall zone of Gram-positive bacteria; however, intercellular intoxication of sister cells does not occur because they express the TipC immunity protein. In the present study, we sought to characterize the molecular basis of self-protection by TipC. Using sub-cellular localization and protease protection assays, we show that TipC is a membrane protein with an N-terminal transmembrane segment and a C-terminal TelC-inhibitory domain that protrudes into the inner wall zone. The 1.9-Å X-ray crystal structure of a non-protective TipC paralogue reveals that the soluble domain of TipC proteins adopts a crescent-shaped fold that is composed of three α-helices and a seven-stranded β-sheet. Subsequent homology-guided mutagenesis demonstrates that a concave surface formed by the predicted β-sheet of TipC is required for both its interaction with TelC and its TelC-inhibitory activity. S. intermedius cells lacking the tipC gene are susceptible to growth inhibition by TelC delivered between cells; however, we find that the growth of this strain is unaffected by endogenous or overexpressed TelC, although the toxin accumulates in culture supernatants. Together, these data indicate that the TelC-inhibitory activity of TipC is only required for intercellularly transferred TelC and that the T7SS apparatus transports TelC across the cell envelope in a single step, bypassing the cellular compartment in which it exerts toxicity en route.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6193138PMC
http://dx.doi.org/10.1016/j.jmb.2018.08.027DOI Listing

Publication Analysis

Top Keywords

molecular basis
8
immunity protein
8
type vii
8
vii secretion
8
secretion system
8
gram-positive bacteria
8
exerts toxicity
8
inner wall
8
wall zone
8
tipc
8

Similar Publications

Quinone extraction drives atmospheric carbon monoxide oxidation in bacteria.

Nat Chem Biol

January 2025

Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.

Diverse bacteria and archaea use atmospheric CO as an energy source for long-term survival. Bacteria use [MoCu]-CO dehydrogenases (Mo-CODH) to convert atmospheric CO to carbon dioxide, transferring the obtained electrons to the aerobic respiratory chain. However, it is unknown how these enzymes oxidize CO at low concentrations and interact with the respiratory chain.

View Article and Find Full Text PDF

Zoonoses are infectious diseases transmitted from animals to humans. Bats have been suggested to harbour more zoonotic viruses than any other mammalian order. Infections in bats are largely asymptomatic, indicating limited tissue-damaging inflammation and immunopathology.

View Article and Find Full Text PDF

Resolving the molecular basis of a Mendelian condition remains challenging owing to the diverse mechanisms by which genetic variants cause disease. To address this, we developed a synchronized long-read genome, methylome, epigenome and transcriptome sequencing approach, which enables accurate single-nucleotide, insertion-deletion and structural variant calling and diploid de novo genome assembly. This permits the simultaneous elucidation of haplotype-resolved CpG methylation, chromatin accessibility and full-length transcript information in a single long-read sequencing run.

View Article and Find Full Text PDF

The ENaC taste receptor's perceived mechanism of mushroom salty peptides revealed by molecular interaction analysis.

NPJ Sci Food

January 2025

Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, the People's Republic of China, Shanghai, 201403, China.

The ENaC receptor acts as a taste receptor to recognize and perceive salty substances. This study explored the mechanisms by which the ENaC taste receptor recognizes and binds mushroom-derived salty peptides using molecular interaction and molecular simulation. The three subunits α, β, and γ of the ENaC taste receptor (SCNN1α, SCNN1β, and SCNN1γ) showed different recognition characteristics for the salty peptide.

View Article and Find Full Text PDF

Thyroid cancer.

Med Clin (Barc)

January 2025

Servicio de Endocrinología y Nutrición, Hospital i Institut de Recerca Germans Trias i Pujol, Universitat Autònoma de Barcelona, España. Electronic address:

In recent decades, the diagnosis of thyroid cancer, especially the papillary type, has increased significantly due to the use of imaging techniques such as ultrasound. For this reason, it is essential to rationalize diagnosis and treatment, since the behavior of thyroid cancer varies from slow-progressing tumors to highly aggressive ones. The application of risk assessment systems for ultrasound images and the optimization of cytology incorporating molecular studies allows cases to be stratified in order to select therapy on an individual basis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!