One promising series of small-molecule orexin receptor agonists has been described, but the molecular pharmacological properties, i.e. ability and potency to activate the different orexin receptor-regulated signal pathways have not been reported for any of these ligands. We have thus here assessed these properties for the most potent ligand of the series, 4'-methoxy-N,N-dimethyl-3'-[N-(3-{[2-(3-methylbenzamido)ethyl]amino}phenyl sulfamoyl]-(1,1'-biphenyl)-3-carboxamide (Nag 26). Chinese hamster ovary-K1 cells expressing human orexin receptor subtypes OX and OX were used. Ca elevation and cell viability and death were assessed by fluorescent methods, the extracellular signal-regulated kinase pathway by a luminescent Elk-1 reporter assay, and phospholipase C and adenylyl cyclase activities by radioactive methods. The data suggest that for the G-dependent responses, Ca, phospholipase C and Elk-1, Nag 26 is a full agonist for both receptors, though of much lower potency. However, saturation was not always reached for OX, partially due to Nag 26's low solubility and partially because the response decreased at high concentrations. The latter occurs in the same range as some reduction of cell viability, which is independent of orexin receptors. Based on the EC, Nag 26 was OX-selective by 20-200 fold in different assays, with some indication of biased agonism (as compared to orexin-A). Nag 26 is a potent orexin receptor agonist with a largely similar pharmacological profile as orexin-A. However, its weaker potency (low-mid micromolar) and low water solubility as well as the non-specific effect in the mid-micromolar range may limit its usefulness under physiological conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2018.09.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!